Publications Details

Publications / SAND Report

Controlling radioisotope proportions when randomly sampling from Dirichlet distributions in PyRIID

Van Omen, Alan J.; Morrow, Tyler M.

As machine learning models for radioisotope quantification become more powerful, likewise the need for high-quality synthetic training data grows as well. For problem spaces that involve estimating the relative isotopic proportions of various sources in gamma spectra it is necessary to generate training data that accurately represents the variance of proportions encountered. In this report, we aim to provide guidance on how to target a desired variance of proportions which are randomly when using the PyRIID Seed Mixer, which samples from a Dirichlet distribution. We provide a method for properly parameterizing the Dirichlet distribution in order to maintain a constant variance across an arbitrary number of dimensions, where each dimension represents a distinct source template being mixed. We demonstrate that our method successfully parameterizes the Dirichlet distribution to target a specific variance of proportions, provided that several conditions are met. This allows us to follow a principled technique for controlling how random mixture proportions are generated which are then used downstream in the synthesis process to produce the final, noisy gamma spectra.