Publications Details
Compressed sensing for fast electron microscopy
Anderson, Hyrum A.; Wheeler, Jason W.; Larson, K.W.
Scanning electron microscopes (SEMs) are used in neuroscience and materials science to image square centimeters of sample area at nanometer scales. Since imaging rates are in large part SNR-limited. imaging time is proportional to the number of measurements taken of each sample; in a traditional SEM. large collections can lead to weeks of around-the-clock imaging time. We previously reported a single-beam sparse sampling approach that we have demonstrated on an operational SEM for collecting "smooth" images. In this paper, we analyze how measurements from a hypothetical multi-beam system would compare to the single-beam approach in a compressed sensing framework. To that end. multi-beam measurements are synthesized on a single-beam SEM. and fidelity of reconstructed images are compared to the previously demonstrated approach. Since taking fewer measurements comes at the cost of reduced SNR, image fidelity as a function of undersampling ratio is reported.