Publications Details

Publications / Conference

Complex geometry effects on supersonic cavity flows

Casper, Katya M.; Wagner, Justin W.; Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Pruett, Brian O.

The flow over aircraft bays exhibits many characteristics of cavity flows, namely resonant pressures that can create high structural loading. Most studies have represented these bays as rectangular cavities; however, this simplification neglects many features of the actual flight geometry which could affect the unsteady pressure field and resulting loading in the bay. To address this shortcoming, a complex cavity geometry was developed to incorporate more realistic aircraft-bay features including shaped inlets and internal cavity variations. A parametric study of these features at Mach 1.5, 2.0, and 2.5 was conducted to identify key differences from simple rectangular cavity flows. The frequency of the basic rectangular cavity modes could be predicted by theory; however, most complex geometries shifted these frequencies. Geometric changes that constricted the flow tended to enhance cavity modes and create higher pressure fluctuations. Other features, such as a leading edge ramp, lifted the shear layer higher with respect to the aft cavity wall and led to cavity tone suppression. Complex features that introduced spanwise non-uniformity into the shear layer also led to a reduction of cavity tones, especially at the aft end of the cavity.