Publications Details

Publications / SAND Report

Characterization of Self-Magnetic Pinch (SMP) Radiographic Diode Performance on RITS-6 at Sandia National Laboratories

Renk, Timothy J.; Kiefer, Mark L.; Oliver, Bryan V.; Webb, Timothy J.; Leckbie, Joshua; Johnston, Mark D.; Simpson, Sean S.; Mazarakis, Michael G.

The goals of an electron beam-driven radiographic source are the focusing of high current at high voltage to a minimal spot size with excellent shot-to-shot reproducibility. The Self-Magnetic Pinch (SMP) diode makes use of such an intense electron beam impinging on a high-atomic weight (tantalum) converter, a counter-streaming ion beam to help minimize the spot size, and operation in a magnetic field-free diode region which further encourages small spot size. Through a series of diode development experiments, output voltages up to 12.5 MV and output currents up to 225 kA have been characterized, with resulting spot sizes below ~ few mm. Scaling studies with parameter variation, such as diode aspect ratio and anode-cathode (A-K) gap variation, give systematic validation to what has heretofore been noted anecdotally by other research groups. While the lack of an imbedded magnetic field helps minimize the SMP spot size, a secondary result may be the generation of beam instabilities which can terminate the radiation pulse. There is anecdotal evidence that in-situ DC heating of the diode region can help stabilize the beam pinch. Clear experimental evidence exists that DC heating/RF cleaning results in better control over the counter-streaming ion population. Expanded use of spatial dose-rate detection is shown to yield new insights into electron beam dynamics in the SMP diode. An attendant study of the SMP diode as a load for an Inductive Voltage Adder (IVA) driver leads to insights into the behavior of the IVA-SMP diode configuration, viewed as a total system, and yields constraints on the overall impedance behavior of the SMP diode load.