Publications Details
CARS in an Inductively Coupled Plasma Torch, Part 2: Temperature and Carbon-Monoxide Measurements in the Reaction Layer of a Graphite Ablator
Kearney, S.P.; Bhakta, Rajkumar
We demonstrate coherent anti-Stokes Raman scattering (CARS) detection of the CO and N2 molecules in the reaction layer of a graphite material sample exposed to the 5000-6000 K plume of an inductively-coupled plasma torch operating on air. CO is a dominant product in the surface oxidative reaction of graphite and lighter weight carbon-based thermalprotection-system materials. A standard nanosecond CARS approach using Nd:YAG and a single broadband dye laser with ~200 cm-1 spectral width is employed for demonstration measurements, with the CARS volume located less than 1-mm from an ablating graphite sample. Quantitative measurements of both temperature and the CO/N2 ratio are obtained from model fits to CARS spectra that have been averaged for 5 laser shots. The results indicate that CARS can be used for space- and time-resolved detection of CO in high-temperature ablation tests near atmospheric pressure.