Publications Details
Assessing Uncertainty in Modeling Stress Corrosion Cracking
Mendoza, Hector; Gilkey, Lindsay N.; Brooks, Dusty M.
This report summarizes the collaboration between Sandia National Laboratories (SNL) and the Nuclear Regulatory Commission (NRC) to improve the state of knowledge on chloride induced stress corrosion cracking (CISCC). The foundation of this work relied on using SNL’s CISCC computer code to assess the current state of knowledge for probabilistically modeling CISCC on stainless steel canisters. This work is presented as three tasks. The first task is exploring and independently comparing crack growth rate (CGR) models typically used in CISCC modeling by the research community. The second task is implementing two of the more conservative CGR models from the first task into SNL’s full CISCC code to understand the impact of the different CGR models on a full probabilistic analysis while studying uncertainty from three key input parameters. The combined work of the first two tasks showed that properly measuring salt deposition rates is impactful to reducing uncertainty when modeling CISCC. The work in Task 2 also showed how probabilistic CGR models can be more appropriate at capturing aleatory uncertainty when modeling SCC. Lastly, appropriate and realistic input parameters relevant for CISCC modeling were documented in the last task as a product of the simulations considered in the first two tasks.