Publications Details
An $\bar{F}$ Meshfree Treatment for Nearly Incompressible Materials
Schlinkman, Ryan T.; Beckwith, Frank; Tupek, Michael R.
The computational modeling of nearly incompressible materials is a difficult task for many numerical methods, and even after several decades of investigation, it is still an active research area. This report seeks to address the treatment of incompressible materials in meshfree methods using a synergistic combination of two treatments. The first treatment is an $\bar{F}$ method, where the decomposed dilatational and deviatoric parts are calculated over different smoothing domains. The second treatment “activates” additional nodes throughout the domain to increase the flexibility of the model. We implement this synergistic combination in the context of the reproducing kernel particle method (RKPM) and present results for the Cook’s membrane benchmark problem. The results are compared with those using the composite tet10 finite element with a volume-averaged J formulation. We show that the combined treatment is an effective way to deal with nearly incompressible materials in a meshfree framework and compares well with other highly-effective treatments.