Publications Details
Active vibration control of a photolithography platen for increased resolution and throughput
An experimental investigation into active control of bending vibrations in thick plate-like structural elements is described. This work is motivated by vibration problems encountered in manufacturing processes that require greater control authority than is available from conventional surface mounted PZT patches or PVDF films. The focus of this experiment is a surrogate photolithography platen in which PZT stacks are mounted in cutouts on the platen top surface. These actuators provide significant vibration control authority by generating moments in the platen through their compressive loads. A Positive Position Feedback control law is used to significantly augment the damping in the first two bending modes. The implications of the experimental results for photolithography machines are discussed.