Publications Details
A Scaling Analysis of Post-Detonation Mixing With Detailed Chemical Kinetics
Egeln, Anthony A.; Houim, Ryan W.; Hewson, John C.; Knaus, Robert C.
Numerical simulations were performed in 3D Cartesian coordinates to examine the post-detonation processes produced by the detonation of a 12 mm-diameter hemispherical PETN explosive charge in air. The simulations captured air dissociation by the Mach 20+ shock, chemical equilibration, and afterburning using finite-rate chemical kinetics with a skeletal chemical reaction mechanism. The Becker-Kistiakowsky-Wilson real-gas equation of state is used for the gas-phase. A simplified programmed burn model is used to seamlessly couple the detonation propagation through the explosive charge to the post-detonation reaction processes inside the fireball. Four charge sizes were considered, including diameters of 12 mm, 38 mm, 120 mm, and 1200 mm. The computed blast, shock structures, and chemical composition within the fireball agree with literature. The evolution of the flow at early times is shown to be gas dynamic driven and nearly self-similar when the time and space was scaled. The flow fields were azimuthally averaged and a mixing layer analysis was performed. The results show differences in the temperature and chemical composition with increasing charge size, implying a transition from a chemical kinetic-limited to a mixing-limited regime.