Publications

Results 1801–1850 of 9,998

Search results

Jump to search filters

Data-driven high-fidelity 2D microstructure reconstruction via non-local patch-based image inpainting

Acta Materialia

Laros, James H.; Tran, Hoang

Microstructure reconstruction problems are usually limited to the representation with finitely many number of phases, e.g. binary and ternary. However, images of microstructure obtained through experimental, for example, using microscope, are often represented as a RGB or grayscale image. Because the phase-based representation is discrete, more rigid, and provides less flexibility in modeling the microstructure, as compared to RGB or grayscale image, there is a loss of information in the conversion. In this paper, a microstructure reconstruction method, which produces images at the fidelity of experimental microscopy, i.e. RGB or grayscale image, is proposed without introducing any physics-based microstructure descriptor. Furthermore, the image texture is preserved and the microstructure image is represented with continuous variables (as in RGB or grayscale images), instead of binary or categorical variables, which results in a high-fidelity image of microstructure reconstruction. The advantage of the proposed method is its quality of reconstruction, which can be applied to any other binary or multiphase 2D microstructure. The proposed method can be thought of as a subsampling approach to expand the microstructure dataset, while preserving its image texture. Moreover, the size of the reconstructed image is more flexible, compared to other machine learning microstructure reconstruction method, where the size must be fixed beforehand. In addition, the proposed method is capable of joining the microstructure images taken at different locations to reconstruct a larger microstructure image. A significant advantage of the proposed method is to remedy the data scarcity problem in materials science, where experimental data is scare and hard to obtain. The proposed method can also be applied to generate statistically equivalent microstructures, which has a strong implication in microstructure-related uncertainty quantification applications. The proposed microstructure reconstruction method is demonstrated with the UltraHigh Carbon Steel micrograph DataBase (UHCSDB).

More Details

Finite-element modeling for an explosively loaded ferroelectric generator

Niederhaus, John H.; Yang, Pin Y.; DiAntonio, Christopher D.; Vunni, George

A preliminary finite-element model has been developed using the ALEGRA-FE code for explosive driven depoling of a PZT 95/5 ferroelectric generator. The ferroelectric material is characterized using hysteresis-loop and hydrostatic depoling tests. These characteristics are incorporated into ALEGRA-FE simulations that model the explosive drive mechanism and shock environment in the material leading to depoling, as well as the ferroelectric response and the behavior of a coupled circuit. The ferroelectric-to-antiferroelectric phase transition is captured, producing an output voltage pulse that matches experimental data to within 10% in rise time, and to within about 15% for the final voltage. Both experimental and modeled pulse magnitudes are less than the theoretical maximum output of the material. Observations from materials characterization suggest that unmodeled effects such as trapped charge in the stored FEG material may have influenced the experimentally observed output.

More Details

Complex Fracture Nucleation and Evolution with Nonlocal Elastodynamics

Journal of Peridynamics and Nonlocal Modeling

Lehoucq, Richard B.; Lipton, Robert P.; Jha, Prashant K.

A mechanical model is introduced for predicting the initiation and evolution of complex fracture patterns without the need for a damage variable or law. The model, a continuum variant of Newton’s second law, uses integral rather than partial differential operators where the region of integration is over finite domain. The force interaction is derived from a novel nonconvex strain energy density function, resulting in a nonmonotonic material model. The resulting equation of motion is proved to be mathematically well-posed. The model has the capacity to simulate nucleation and growth of multiple, mutually interacting dynamic fractures. In the limit of zero region of integration, the model reproduces the classic Griffith model of brittle fracture. The simplicity of the formulation avoids the need for supplemental kinetic relations that dictate crack growth or the need for an explicit damage evolution law.

More Details

Quantifying Uncertainty in Emulations (LDRD Report)

Crussell, Jonathan C.; Brown, Aaron B.; Jennings, Jeremy K.; Kavaler, David; Kroeger, Thomas M.; Phillips, Cynthia A.

This report summarizes the work performed under the project “Quantifying Uncertainty in Emulations.” Emulation can be used to model real-world systems, typically using virtualization to run the real software on virtualized hardware. Emulations are increasingly used to answer mission-oriented questions, but how well they represent the real-world systems is still an open area of research. The goal of the project was to quantify where and how emulations differ from the real world. To do so, we ran a representative workload on both, and collected and compared metrics to identify differences. We aimed to capture behaviors, rather than performance, differences as the latter is more well-understood in the literature.

More Details

Aspherical particle models for molecular dynamics simulation

Computer Physics Communications

Plimpton, Steven J.

In traditional molecular dynamics (MD) simulations, atoms and coarse-grained particles are modeled as point masses interacting via isotropic potentials. For studies where particle shape plays a vital role, more complex models are required. In this paper we describe a spectrum of approaches for modeling aspherical particles, all of which are now available (some recently) as options within the LAMMPS MD package. Broadly these include two classes of models. In the first, individual particles are aspherical, either via a pairwise anisotropic potential which implicitly assigns a simple geometric shape to each particle, or in a more general way where particles store internal state which can explicitly define a complex geometric shape. In the second class of models, individual particles are simple points or spheres, but rigid body constraints are used to create composite aspherical particles in a variety of complex shapes. We discuss parallel algorithms and associated data structures for both kinds of models, which enable dynamics simulations of aspherical particle systems across a wide range of length and time scales. We also highlight parallel performance and scalability and give a few illustrative examples of aspherical models in different contexts.

More Details
Results 1801–1850 of 9,998
Results 1801–1850 of 9,998