StressBench: A Configurable Full System Network and I/O Benchmark Framework
Abstract not provided.
Abstract not provided.
The U.S. Army Research Office (ARO), in partnership with IARPA, are investigating innovative, efficient, and scalable computer architectures that are capable of executing next-generation large scale data-analytic applications. These applications are increasingly sparse, unstructured, non-local, and heterogeneous. Under the Advanced Graphic Intelligence Logical computing Environment (AGILE) program, Performer teams will be asked to design computer architectures to meet the future needs of the DoD and the Intelligence Community (IC). This design effort will require flexible, scalable, and detailed simulation to assess the performance, efficiency, and validity of their designs. To support AGILE, Sandia National Labs will be providing the AGILE-enhanced Structural Simulation Toolkit (A-SST). This toolkit is a computer architecture simulation framework designed to support fast, parallel, and multi-scale simulation of novel architectures. This document describes the A-SST framework, some of its library of simulation models, and how it may be used by AGILE Performers.
Abstract not provided.
Abstract not provided.
Scientific applications run on high-performance computing (HPC) systems are critical for many national security missions within Sandia and the NNSA complex. However, these applications often face performance degradation and even failures that are challenging to diagnose. To provide unprecedented insight into these issues, the HPC Development, HPC Systems, Computational Science, and Plasma Theory & Simulation departments at Sandia crafted and completed their FY21 ASC Level 2 milestone entitled "Integrated System and Application Continuous Performance Monitoring and Analysis Capability." The milestone created a novel integrated HPC system and application monitoring and analysis capability by extending Sandia's Kokkos application portability framework, Lightweight Distributed Metric Service (LDMS) monitoring tool, and scalable storage, analysis, and visualization pipeline. The extensions to Kokkos and LDMS enable collection and storage of application data during run time, as it is generated, with negligible overhead. This data is combined with HPC system data within the extended analysis pipeline to present relevant visualizations of derived system and application metrics that can be viewed at run time or post run. This new capability was evaluated using several week-long, 290-node runs of Sandia's ElectroMagnetic Plasma In Realistic Environments ( EMPIRE ) modeling and design tool and resulted in 1TB of application data and 50TB of system data. EMPIRE developers remarked this capability was incredibly helpful for quickly assessing application health and performance alongside system state. In short, this milestone work built the foundation for expansive HPC system and application data collection, storage, analysis, visualization, and feedback framework that will increase total scientific output of Sandia's HPC users.
Abstract not provided.
Sandia National Laboratories is investigating scalable architectural simulation capabilities with a focus on simulating and evaluating highly scalable supercomputers for high performance computing applications. There is a growing demand for RTL model integration to provide the capability to simulate customized node architectures and heterogeneous systems. This report describes the first steps integrating the ESSENTial Signal Simulation Enabled by Netlist Transforms (ESSENT) tool with the Structural Simulation Toolkit (SST). ESSENT can emit C++ models from models written in FIRRTL to automatically generate components. The integration workflow will automatically generate the SST component and necessary interfaces to ’plug’ the ESSENT model into the SST framework.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
In this position paper we will address challenges and opportunities relating to the design and codesign of application specific circuits. Given our background as computational scientists, our perspective is from the viewpoint of a highly motivated application developer as opposed to career computer architects
MLIR (Multi-Level Intermediate Representation), is an extensible compiler framework that supports high-level data structures and operation constructs. These higher-level code representations are particularly applicable to the artificial intelligence and machine learning (AI/ML) domain, allowing developers to more easily support upcoming heterogeneous AI/ML accelerators and develop flexible domain specific compilers/frameworks with higher-level intermediate representations (IRs) and advanced compiler optimizations. The result of using MLIR within the LLVM compiler framework is expected to yield significant improvement in the quality of generated machine code, which in turn will result in improved performance and hardware efficiency
Proceedings - International Symposium on High-Performance Computer Architecture
1 The exponential growth of data has driven technology providers to develop new protocols, such as cache coherent interconnects and memory semantic fabrics, to help users and facilities leverage advances in memory technologies to satisfy these growing memory and storage demands. Using these new protocols, fabric-Attached memories (FAM) can be directly attached to a system interconnect and be easily integrated with a variety of processing elements (PEs). Moreover, systems that support FAM can be smoothly upgraded and allow multiple PEs to share the FAM memory pools using well-defined protocols. The sharing of FAM between PEs allows efficient data sharing, improves memory utilization, reduces cost by allowing flexible integration of different PEs and memory modules from several vendors, and makes it easier to upgrade the system. One promising use-case for FAMs is in High-Performance Compute (HPC) systems, where the underutilization of memory is a major challenge. However, adopting FAMs in HPC systems brings new challenges. In addition to cost, flexibility, and efficiency, one particular problem that requires rethinking is virtual memory support for security and performance. To address these challenges, this paper presents decoupled access control and address translation (DeACT), a novel virtual memory implementation that supports HPC systems equipped with FAM. Compared to the state-of-The-Art two-level translation approach, DeACT achieves speedup of up to 4.59x (1.8x on average) without compromising security.1Part of this work was done when Vamsee was working under the supervision of Amro Awad at UCF. Amro Awad is now with the ECE Department at NC State.
Abstract not provided.
Programmable accelerators have become commonplace in modern computing systems. Advances in programming models and the availability of unprecedented amounts of data have created a space for massively parallel accelerators capable of maintaining context for thousands of concurrent threads resident on-chip. These threads are grouped and interleaved on a cycle-by-cycle basis among several massively parallel computing cores. One path for the design of future supercomputers relies on an ability to model the performance of these massively parallel cores at scale. The SST framework has been proven to scale up to run simulations containing tens of thousands of nodes. A previous report described the initial integration of the open-source, execution-driven GPU simulator, GPGPU-Sim, into the SST framework. This report discusses the results of the integration and how to use the new GPU component in SST. It also provides examples of what it can be used to analyze and a correlation study showing how closely the execution matches that of a Nvidia V100 GPU when running kernels and mini-apps.
2021 IEEE High Performance Extreme Computing Conference, HPEC 2021
We present StressBench, a network benchmarking framework written for testing MPI operations and file I/O concurrently. It is designed specifically to execute MPI communication and file access patterns that are representative of real-world scientific applications. Existing tools consider either the worst case congestion with small abstract patterns or peak performance with simplistic patterns. StressBench allows for a richer study of congestion by allowing orchestration of network load scenarios that are representative of those typically seen at HPC centres, something that is difficult to achieve with existing tools. We demonstrate the versatility of the framework from micro benchmarks through to finely controlled congested runs across a cluster. Validation of the results using four proxy application communication schemes within StressBench against parent applications shows a maximum difference of 15%. Using the I/O modeling capabilities of StressBench, we are able to quantify the impact of file I/O on application traffic showing how it can be used in procurement and performance studies.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
International Conference for High Performance Computing, Networking, Storage and Analysis, SC
Arm processors have been explored in HPC for several years, however there has not yet been a demonstration of viability for supporting large-scale production workloads. In this paper, we offer a retrospective on the process of bringing up Astra, the first Petascale supercomputer based on 64-bit Arm processors, and validating its ability to run production HPC applications. Through this process several immature technology gaps were addressed, including software stack enablement, Linux bugs at scale, thermal management issues, power management capabilities, and advanced container support. From this experience, several lessons learned are formulated that contributed to the successful deployment of Astra. These insights can be helpful to accelerate deploying and maturing other first-seen HPC technologies. With Astra now supporting many users running a diverse set of production applications at multi-thousand node scales, we believe this constitutes strong supporting evidence that Arm is a viable technology for even the largest-scale supercomputer deployments.
ACM International Conference Proceeding Series
With many recent advances in interconnect technologies and memory interfaces, disaggregated memory systems are approaching industrial adoption. For instance, the recent Gen-Z consortium focuses on a new memory semantic protocol that enables fabric-attached memories (FAM), where the memory and other compute units can be directly attached to fabric interconnects. Decoupling of memory from compute units becomes a feasible option as the rate of data transfer increases due to the emergence of novel interconnect technologies, such as Silicon Photonic Interconnects. Disaggregated memories not only enable more efficient use of capacity (minimizes under-utilization) they also allow easy integration of evolving technologies. Additionally, they simplify the programming model at the same time allowing efficient sharing of data. However, the latency of accessing the data in these Fabric Attached disaggregated Memories (FAMs) is dependent on the latency imposed by the fabric interfaces. To reduce memory access latency and to improve the performance of FAM systems, in this paper, we explore techniques to prefetch data from FAMs to the local memory present in the node (PreFAM). We realize that since the memory access latency is high in FAMs, prefetching a cache block (64 bytes) from FAM can be inefficient, since the possibility of issuing demand requests before the completion of prefetch requests, to the same FAM locations, is high. Hence, we explore predicting and prefetching FAM blocks at a distance; prefetching blocks which are going to be accessed in future but not immediately. We show that, with prefetching, the performance of FAM architectures increases by 38.84%, while memory access latency is improved by 39.6%, with only 17.65% increase in the number of accesses to the FAM, on average. Further, by prefetching at a distance we show a performance improvement of 72.23%.
Abstract not provided.
Abstract not provided.
International Conference for High Performance Computing, Networking, Storage and Analysis, SC
Community detection in graphs is a canonical social network analysis method. We consider the problem of generating suites of teras-cale synthetic social networks to compare the solution quality of parallel community-detection methods. The standard method, based on the graph generator of Lancichinetti, Fortunato, and Radicchi (LFR), has been used extensively for modest-scale graphs, but has inherent scalability limitations. We provide an alternative, based on the scalable Block Two-Level Erdos-Renyi (BTER) graph generator, that enables HPC-scale evaluation of solution quality in the style of LFR. Our approach varies community coherence, and retains other important properties. Our methods can scale real-world networks, e.g., to create a version of the Friendster network that is 512 times larger. With BTER's inherent scalability, we can generate a 15-terabyte graph (4.6B vertices, 925B edges) in just over one minute. We demonstrate our capability by showing that label-propagation community-detection algorithm can be strong-scaled with negligible solution-quality loss.
Abstract not provided.
ACM International Conference Proceeding Series
As demands for memory-intensive applications continue to grow, the memory capacity of each computing node is expected to grow at a similar pace. In high-performance computing (HPC) systems, the memory capacity per compute node is decided upon the most demanding application that would likely run on such system, and hence the average capacity per node in future HPC systems is expected to grow significantly. However, since HPC systems run many applications with different capacity demands, a large percentage of the overall memory capacity will likely be underutilized; memory modules can be thought of as private memory for its corresponding computing node. Thus, as HPC systems are moving towards the exascale era, a better utilization of memory is strongly desired. Moreover, upgrading memory system requires significant efforts. Fortunately, disaggregated memory systems promise better utilization by defining regions of global memory, typically referred to as memory blades, which can be accessed by all computing nodes in the system, thus achieving much better utilization. Disaggregated memory systems are expected to be built using dense, power-efficient memory technologies. Thus, emerging nonvolatile memories (NVMs) are placing themselves as the main building blocks for such systems. However, NVMs are slower than DRAM. Therefore, it is expected that each computing node would have a small local memory that is based on either HBM or DRAM, whereas a large shared NVM memory would be accessible by all nodes. Managing such system with global and local memory requires a novel hardware/software co-design to initiate page migration between global and local memory to maximize performance while enabling access to huge shared memory. In this paper we provide support to migrate pages, investigate such memory management aspects and the major system-level aspects that can affect design decisions in disaggregated NVM systems
As new memory technologies appear on the market, there is a growing push to incorporate them into future architectures. Compared to traditional DDR DRAM, these technologies provide appealing advantages such as increased bandwidth or non-volatility. However, the technologies have significant downsides as well including higher cost, manufacturing complexity, and for non-volatile memories, higher latency and wear-out limitations. As such, no technology has emerged as a clear technological and economic winner. As a result, systems are turning to the concept of multi-level memory, or mixing multiple memory technologies in a single system to balance cost, performance, and reliability.
To achieve exascale computing, fundamental hardware architectures must change. The most significant consequence of this assertion is the impact on the scientific and engineering applications that run on current high performance computing (HPC) systems, many of which codify years of scientific domain knowledge and refinements for contemporary computer systems. In order to adapt to exascale architectures, developers must be able to reason about new hardware and determine what programming models and algorithms will provide the best blend of performance and energy efficiency into the future. While many details of the exascale architectures are undefined, an abstract machine model is designed to allow application developers to focus on the aspects of the machine that are important or relevant to performance and code structure. These models are intended as communication aids between application developers and hardware architects during the co-design process. We use the term proxy architecture to describe a parameterized version of an abstract machine model, with the parameters added to elucidate potential speeds and capacities of key hardware components. These more detailed architectural models are formulated to enable discussion between the developers of analytic models and simulators and computer hardware architects. They allow for application performance analysis and hardware optimization opportunities. In this report our goal is to provide the application development community with a set of models that can help software developers prepare for exascale. In addition, through the use of proxy architectures, we can enable a more concrete exploration of how well new and evolving application codes map onto future architectures. This second version of the document addresses system scale considerations and provides a system-level abstract machine model with proxy architecture information.
Programmable accelerators have become commonplace in modern computing systems. Advances in programming models and the availability of massive amounts of data have created a space for massively parallel accelerators capable of maintaining context for thousands of concurrent threads resident on-chip. These threads are grouped and interleaved on a cycle-by-cycle basis among several massively parallel computing cores. One path for the design of future supercomputers relies on an ability to model the performance of these massively parallel cores at scale. The SST framework has been proven to scale up to run simulations containing tens of thousands of nodes. A previous report described the initial integration of the open-source, execution-driven GPU simulator, GPGPU-Sim, into the SST framework. This report discusses the results of the integration and how to use the new GPU component in SST. It also provides examples of what it can be used to analyze and a correlation study showing how closely the execution matches that of a Nvidia V100 GPU when running kernels and mini-apps.
ATS platforms are some of the largest, most complex, and most expensive computer systems installed in the United States at just a few major national laboratories. This milestone describes our recent efforts to procure, install, and test a machine called Vortex at Sandia National Laboratories that is compatible with the larger ATS platform Sierra at LLNL. In this milestone, we have 1) configured and procured a machine with similar hardware characteristics as Sierra ATS, 2) installed the machine, verified its physical hardware, and measured its baseline performance, and 3) demonstrated the machine's compatibility with Sierra ATS, and capacity for useful development and testing of Sandia computer codes (such as SPARC), including uses such as nightly regression testing workloads.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of IEEE Computer Society Annual Symposium on VLSI, ISVLSI
Many applications have growing demands for memory, particularly in the HPC space, making the memory system a potential bottleneck of next-generation computing systems. Sharing the memory system across processor sockets and nodes becomes a compelling argument given that memory technology is scaling at a slower rate than processor technology. Moreover, as many applications rely on shared data, e.g., graph applications and database workloads, having a large number of nodes accessing shared memory allows for efficient use of resources and avoids duplicating huge files, which can be infeasible for large graphs or scientific data. As new memory technologies come on the market, the flexibility of upgrading memory and system updates become major a concern, disaggregated memory systems where memory is shared across different computing nodes, e.g., System-on-Chip (SoC), is expected to become the most common design/architecture on memory-centric systems, e.g., The Machine project from HP Labs. However, due to the nature of such systems, different users and applications compete for the available memory bandwidth, which can lead to severe contention due to memory traffic from different SoCs. In this paper, we discuss the contention problem in disaggregated memory systems and suggest mechanisms to ensure memory fairness and enforce QoS. Our simulation results show that employing our proposed QoS techniques can speed up memory response time by up to 55%.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Programmable accelerators have become commonplace in modern computing systems. Advances in programming models and the availability of massive amounts of data have created a space for massively parallel acceleration where the context for thousands of concurrent threads are resident on-chip. These threads are grouped and interleaved on a cycle-by-cycle basis among several massively parallel computing cores. The design of future supercomputers relies on an ability to model the performance of these massively parallel cores at scale. To address the need for a scalable, decentralized GPU model that can model large GPUs, chiplet-based GPUs and multi-node GPUs, this report details the first steps in integrating the open-source, execution driven GPGPU-Sim into the SST framework. The first stage of this project, creates two elements: a kernel scheduler SST element accepts work from SST CPU models and schedules it to an SM-collection element that performs cycle-by-cycle timing using SSTs Mem Hierarchy to model a flexible memory system.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The Vanguard program informally began in January 2017 with the submission of a white paper entitled "Sandia's Vision for a 2019 Arm Testbed" to NNSA headquarters. The program proceeded in earnest in May 2017 with an announcement by Doug Wade (Director, Office of Advanced Simulation and Computing and Institutional R&D at NNSA) that Sandia National Laboratories (Sandia) would host the first Advanced Architecture Prototype platform based on the Arm architecture. In August 2017, Sandia formed a Tri-lab team chartered to develop a robust HPC software stack for Astra to support the Vanguard program goal of demonstrating the viability of Arm in supporting ASC production computing workloads. This document describes the high-level Vanguard program goals, the Vanguard-Astra project acquisition plan and procurement up to contract placement, the initial software stack environment planned for the Vanguard-Astra platform (Astra), a description of how the communities of users will utilize the platform during the transition from the open network to the classified network, and initial performance results.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The Vanguard program informally began in January 2017 with the submission of a white paper entitled "Sandia's Vision for a 2019 Arm Testbed" to NNSA headquarters. The program proceeded in earnest in May 2017 with an announcement by Doug Wade (Director, Office of Advanced Simulation and Computing and Institutional R&D at NNSA) that Sandia National Laboratories (Sandia) would host the first Advanced Architecture Prototype platform based on the Arm architecture. In August 2017, Sandia formed a Tri-lab team chartered to develop a robust HPC software stack for Astra to support the Vanguard program goal of demonstrating the viability of Arm in supporting ASC production computing workloads.
In October 2017, Sandia broke ground for a new computing center dedicated to High Performance Computing. The east expansion of Building 725 was entirely conceived of, designed, and built in less than 18 months and is a certified LEED Gold design building, the first of its kind for a data center in the State of New Mexico. This 15,000 square-foot building, with novel energy and water-saving technologies, will house Astra, the first in a new generation of Advanced Architecture Prototype Systems to be deployed by the NNSA and the first of many HPC systems in Building 725 East.
Many modern applications have memory footprints that are increasingly large, driving system memory capacities higher and higher. Moreover, these systems are often organized where the bulk of the memory is collocated with the compute capability, which necessitates the need for message passing APIs to facilitate information sharing between compute nodes. Due to the diversity of applications that must run on High-Performance Computing (HPC) systems, the memory utilization can fluctuate wildly from one application to another. And, because memory is located in the node, maintenance can become problematic because each node must be taken offline and upgraded individually. To address these issues, vendors are exploring disaggregated, memory-centric, systems. In this type of organization, there are discrete nodes, reserved solely for memory, which are shared across many compute nodes. Due to their capacity, low-power, and non-volatility, Non-Volatile Memories (NVMs) are ideal candidates for these memory nodes. This report discusses a new component for the Structural Simulation Toolkit (SST), Opal, that can be used to study the impact of using NVMs in a disaggregated system in terms of performance, security, and memory management. This page intentionally left blank.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Architectures with multiple classes of memory media are becoming a common part of mainstream supercomputer deployments. So called multi-level memories offer differing characteristics for each memory component including variation in bandwidth, latency and capacity. This paper investigates the performance of sparse matrix multiplication kernels on two leading highperformance computing architectures — Intel's Knights Landing processor and NVIDIA's Pascal GPU. We describe a data placement method and a chunking-based algorithm for our kernels that exploits the existence of the multiple memory spaces in each hardware platform. We evaluate the performance of these methods w.r.t. standard algorithms using the auto-caching mechanisms Our results show that standard algorithms that exploit cache reuse performed as well as multi-memory-aware algorithms for architectures such as Ki\iLs where the memory subsystems have similar latencies. However, for architectures such as GPUS where memory subsystems differ significantly in both bandwidth and latency, multi-memory-aware methods are crucial for good performance. In addition, our new approaches permit the user to run problems that require larger capacities than the fastest memory of each compute node without depending on the software-managed cache mechanisms.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Supercomputing hardware is undergoing a period of significant change. In order to cope with the rapid pace of hardware and, in many cases, programming model innovation, we have developed the Kokkos Programming Model – a C++-based abstraction that permits performance portability across diverse architectures. Our experience has shown that the abstractions developed can significantly frustrate debugging and profiling activities because they break expected code proximity and layout assumptions. In this paper we present the Kokkos Profiling interface, a lightweight, suite of hooks to which debugging and profiling tools can attach to gain deep insights into the execution and data structure behaviors of parallel programs written to the Kokkos interface.
Abstract not provided.
Abstract not provided.
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2017
Many applications, such as PDE based simulations and machine learning, apply BLAS/LAPACK routines to large groups of small matrices. While existing batched BLAS APIs provide meaningful speedup for this problem type, a non-canonical data layout enabling cross-matrix vectorization may provide further significant speedup. In this paper, we propose a new compact data layout that interleaves matrices in blocks according to the SIMD vector length. We combine this compact data layout with a new interface to BLAS/LAPACK routines that can be used within a hierarchical parallel application. Our layout provides up to 14x, 45x, and 27x speedup against OpenMP loops around optimized DGEMM, DTRSM and DGETRF kernels, respectively, on the Intel Knights Landing architecture. We discuss the compact batched BLAS/LAPACK implementations in two libraries, KokkosKernels and Intel® Math Kernel Library. We demonstrate the APIs in a line solver for coupled PDEs. Finally, we present detailed performance analysis of our kernels.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
2017 IEEE High Performance Extreme Computing Conference, HPEC 2017
Triangle counting serves as a key building block for a set of important graph algorithms in network science. In this paper, we address the IEEE HPEC Static Graph Challenge problem of triangle counting, focusing on obtaining the best parallel performance on a single multicore node. Our implementation uses a linear algebra-based approach to triangle counting that has grown out of work related to our miniTri data analytics miniapplication [1] and our efforts to pose graph algorithms in the language of linear algebra. We leverage KokkosKernels to implement this approach efficiently on multicore architectures. Our performance results are competitive with the fastest known graph traversal-based approaches and are significantly faster than the Graph Challenge reference implementations, up to 670,000 times faster than the C++ reference and 10,000 times faster than the Python reference on a single Intel Haswell node.
Abstract not provided.
Abstract not provided.
The presentation documented the technical approach of the team and summary of the results with sufficient detail to demonstrate both the value and the completion of the milestone. A separate SAND report was also generated with more detail to supplement the presentation.
This milestone is a tri-lab deliverable supporting ongoing Co-Design efforts impacting applications in the Integrated Codes (IC) program element Advanced Technology Development and Mitigation (ATDM) program element. In FY14, the trilabs looked at porting proxy application to technologies of interest for ATS procurements. In FY15, a milestone was completed evaluating proxy applications in multiple programming models and in FY16, a milestone was completed focusing on the migration of lessons learned back into production code development. This year, the co-design milestone focuses on extracting the knowledge gained and/or code revisions back into production applications.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Parallel and Distributed Computing
A challenge in computer architecture is that processors often cannot be fed data from DRAM as fast as CPUs can consume it. Therefore, many applications are memory-bandwidth bound. With this motivation and the realization that traditional architectures (with all DRAM reachable only via bus) are insufficient to feed groups of modern processing units, vendors have introduced a variety of non-DDR 3D memory technologies (Hybrid Memory Cube (HMC),Wide I/O 2, High Bandwidth Memory (HBM)). These offer higher bandwidth and lower power by stacking DRAM chips on the processor or nearby on a silicon interposer. We will call these solutions “near-memory,” and if user-addressable, “scratchpad.” High-performance systems on the market now offer two levels of main memory: near-memory on package and traditional DRAM further away. In the near term we expect the latencies near-memory and DRAM to be similar. Thus, it is natural to think of near-memory as another module on the DRAM level of the memory hierarchy. Vendors are expected to offer modes in which the near memory is used as cache, but we believe that this will be inefficient. In this paper, we explore the design space for a user-controlled multi-level main memory. Our work identifies situations in which rewriting application kernels can provide significant performance gains when using near-memory. We present algorithms designed for two-level main memory, using divide-and-conquer to partition computations and streaming to exploit data locality. We consider algorithms for the fundamental application of sorting and for the data analysis kernel k-means. Our algorithms asymptotically reduce memory-block transfers under certain architectural parameter settings. We use and extend Sandia National Laboratories’ SST simulation capability to demonstrate the relationship between increased bandwidth and improved algorithmic performance. Memory access counts from simulations corroborate predicted performance improvements for our sorting algorithm. In contrast, the k-means algorithm is generally CPU bound and does not improve when using near-memory except under extreme conditions. These conditions require large instances that rule out SST simulation, but we demonstrate improvements by running on a customized machine with high and low bandwidth memory. These case studies in co-design serve as positive and cautionary templates, respectively, for the major task of optimizing the computational kernels of many fundamental applications for two-level main memory systems.
Abstract not provided.
Abstract not provided.
Abstract not provided.
DRAM technology is the main building block of main memory, however, DRAM scaling is becoming very challenging. The main issues for DRAM scaling are the increasing error rates with each new generation, the geometric and physical constraints of scaling the capacitor part of the DRAM cells, and the high power consumption caused by the continuous need for refreshing cell values. At the same time, emerging Non- Volatile Memory (NVM) technologies, such as Phase-Change Memory (PCM), are emerging as promising replacements for DRAM. NVMs, when compared to current technologies e.g., NAND-based ash, have latencies comparable to DRAM. Additionally, NVMs are non-volatile, which eliminates the need for refresh power and enables persistent memory applications. Finally, NVMs have promising densities and the potential for multi-level cell (MLC) storage.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Emerging novel architectures for shared memory parallel computing are incorporating increasingly creative innovations to deliver higher memory performance. A notable exemplar of this phenomenon is the Multi-Channel DRAM (MCDRAM) that is included in the Intel® XeonPhi™ processors. In this paper, we examine techniques to use OpenMP to exploit the high bandwidth of MCDRAM by staging data. In particular, we implement double buffering using OpenMP sections and tasks to explicitly manage movement of data into MCDRAM. We compare our double-buffered approach to a non-buffered implementation and to Intel’s cache mode, in which the system manages the MCDRAM as a transparent cache. We also demonstrate the sensitivity of performance to parameters such as dataset size and the distribution of threads between compute and copy operations.
International Conference for High Performance Computing, Networking, Storage and Analysis, SC
Many applications, such as PDE based simulations and machine learning, apply BLAS/LAPACK routines to large groups of small matrices. While existing batched BLAS APIs provide meaningful speedup for this problem type, a non-canonical data layout enabling cross-matrix vectorization may provide further significant speedup. In this paper, we propose a new compact data layout that interleaves matrices in blocks according to the SIMD vector length. We combine this compact data layout with a new interface to BLAS/LAPACK routines that can be used within a hierarchical parallel application. Our layout provides up to 14 ×, 45 ×, and 27 × speedup against OpenMP loops around optimized DGEMM, DTRSM and DGETRF kernels, respectively, on the Intel Knights Landing architecture. We discuss the compact batched BLAS/LAPACK implementations in two libraries, KokkosKernels and Intel® Math Kernel Library. We demonstrate the APIs in a line solver for coupled PDEs. Finally, we present detailed performance analysis of our kernels.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ACM International Conference Proceeding Series
Managing multi-level memories will require different policies from those used for cache hierarchies, as memory technologies differ in latency, bandwidth, and volatility. To this end we analyze application data allocations and main memory accesses to determine whether an application-driven approach to managing a multi-level memory system comprising stacked and conventional DRAM is viable. Our early analysis shows that the approach is viable, but some applications may require dynamic allocations (i.e., migration) while others are amenable to static allocation.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The next two Advanced Technology platforms for the ASC program will feature complex memory hierarchies – in the Trinity supercomputer being deployed in 2016, Intel’s Knights Landing processors will feature 16GB of on-package, high-bandwidth memory, combined with a larger capacity DDR4 memory and in 2018, the Sierra machine deployed at Lawrence Livermore National Laboratory will feature powerful compute nodes containing POWER9 processors with large capacity memories and an array of coherent GPU accelerators also with high bandwidth memories.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ACM International Conference Proceeding Series
In recent work we quantified the anticipated performance boost when a sorting algorithm is modified to leverage user- Addressable "near-memory," which we call scratchpad. This architectural feature is expected in the Intel Knight's Land- ing processors that will be used in DOE's next large-scale supercomputer. This paper expands our analytical study of the scratch- pad to consider k-means clustering, a classical data-analysis technique that is ubiquitous in the literature and in prac- Tice. We present new theoretical results using the model introduced in [13], which measures memory transfers and assumes that computations are memory-bound. Our the- oretical results indicate that scratchpad-aware versions of k-means clustering can expect performance boosts for high- dimensional instances with relatively few cluster centers. These constraints may limit the practical impact of scratch- pad for k-means acceleration, so we discuss their origins and practical implications. We corroborate our theory with ex- perimental runs on a system instrumented to mimic one with scratchpad memory. We also contribute a semi-formalization of the computa- Tional properties that are necessary and sufficient to predict a performance boost from scratchpad-aware variants of al- gorithms. We have observed and studied these properties in the context of sorting, and now clustering. We conclude with some thoughts on the application of these properties to new areas. Specifically, we believe that dense linear algebra has similar properties to k-means, while sparse linear algebra and FFT computations are more sim-ilar to sorting. The sparse operations are more common in scientific computing, so we expect scratchpad to have signif- icant impact in that area.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings - 2015 IEEE 29th International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2015
A fundamental challenge for supercomputer architecture is that processors cannot be fed data from DRAM as fast as CPUs can consume it. Therefore, many applications are memory-bandwidth bound. As the number of cores per chip increases, and traditional DDR DRAM speeds stagnate, the problem is only getting worse. A variety of non-DDR 3D memory technologies (Wide I/O 2, HBM) offer higher bandwidth and lower power by stacking DRAM chips on the processor or nearby on a silicon interposer. However, such a packaging scheme cannot contain sufficient memory capacity for a node. It seems likely that future systems will require at least two levels of main memory: high-bandwidth, low-power memory near the processor and low-bandwidth high-capacity memory further away. This near memory will probably not have significantly faster latency than the far memory. This, combined with the large size of the near memory (multiple GB) and power constraints, may make it difficult to treat it as a standard cache. In this paper, we explore some of the design space for a user-controlled multi-level main memory. We present algorithms designed for the heterogeneous bandwidth, using streaming to exploit data locality. We consider algorithms for the fundamental application of sorting. Our algorithms asymptotically reduce memory-block transfers under certain architectural parameter settings. We use and extend Sandia National Laboratories' SST simulation capability to demonstrate the relationship between increased bandwidth and improved algorithmic performance. Memory access counts from simulations corroborate predicted performance. This co-design effort suggests implementing two-level main memory systems may improve memory performance in fundamental applications.
This is a presentation outlining a lunch and learn lecture for the Structural Simulation Toolkit, supported by Sandia National Laboratories.
Abstract not provided.
For the FY15 ASC L2 Trilab Codesign milestone Sandia National Laboratories performed two main studies. The first study investigated three topics (performance, cross-platform portability and programmer productivity) when using OpenMP directives and the RAJA and Kokkos programming models available from LLNL and SNL respectively. The focus of this first study was the LULESH mini-application developed and maintained by LLNL. In the coming sections of the report the reader will find performance comparisons (and a demonstration of portability) for a variety of mini-application implementations produced during this study with varying levels of optimization. Of note is that the implementations utilized including optimizations across a number of programming models to help ensure claims that Kokkos can provide native-class application performance are valid. The second study performed during FY15 is a performance assessment of the MiniAero mini-application developed by Sandia. This mini-application was developed by the SIERRA Thermal-Fluid team at Sandia for the purposes of learning the Kokkos programming model and so is available in only a single implementation. For this report we studied its performance and scaling on a number of machines with the intent of providing insight into potential performance issues that may be experienced when similar algorithms are deployed on the forthcoming Trinity ASC ATS platform.
Sandia National Laboratories has been engaged in hardware and software codesign activities for a number of years, indeed, it might be argued that prototyping of clusters as far back as the CPLANT machines and many large capability resources including ASCI Red and RedStorm were examples of codesigned solutions. As the research supporting our codesign activities has moved closer to investigating on-node runtime behavior a nature hunger has grown for detailed analysis of both hardware and algorithm performance from the perspective of low-level operations. The Application Characterization for Exascale (APEX) LDRD was a project concieved of addressing some of these concerns. Primarily the research was to intended to focus on generating accurate and reproducible low-level performance metrics using tools that could scale to production-class code bases. Along side this research was an advocacy and analysis role associated with evaluating tools for production use, working with leading industry vendors to develop and refine solutions required by our code teams and to directly engage with production code developers to form a context for the application analysis and a bridge to the research community within Sandia. On each of these accounts significant progress has been made, particularly, as this report will cover, in the low-level analysis of operations for important classes of algorithms. This report summarizes the development of a collection of tools under the APEX research program and leaves to other SAND and L2 milestone reports the description of codesign progress with Sandia’s production users/developers.
Abstract not provided.
Abstract not provided.
This report provides in-depth information and analysis to help create a technical road map for developing next-generation programming models and runtime systems that support Advanced Simulation and Computing (ASC) work- load requirements. The focus herein is on asynchronous many-task (AMT) model and runtime systems, which are of great interest in the context of "Oriascale7 computing, as they hold the promise to address key issues associated with future extreme-scale computer architectures. This report includes a thorough qualitative and quantitative examination of three best-of-class AIM] runtime systems – Charm-++, Legion, and Uintah, all of which are in use as part of the Centers. The studies focus on each of the runtimes' programmability, performance, and mutability. Through the experiments and analysis presented, several overarching Predictive Science Academic Alliance Program II (PSAAP-II) Asc findings emerge. From a performance perspective, AIV runtimes show tremendous potential for addressing extreme- scale challenges. Empirical studies show an AM runtime can mitigate performance heterogeneity inherent to the machine itself and that Message Passing Interface (MP1) and AM11runtimes perform comparably under balanced conditions. From a programmability and mutability perspective however, none of the runtimes in this study are currently ready for use in developing production-ready Sandia ASC applications. The report concludes by recommending a co- design path forward, wherein application, programming model, and runtime system developers work together to define requirements and solutions. Such a requirements-driven co-design approach benefits the community as a whole, with widespread community engagement mitigating risk for both application developers developers. and high-performance computing runtime systein
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.