Publications / Conference Paper

Stealth-Persist: Architectural Support for Persistent Applications in Hybrid Memory Systems

Alwadi, Mazen; Kommareddy, Vamsee R.; Hughes, Clayton H.; Hammond, Simon D.; Awad, Amro

Non-volatile memories (NVMs) have the characteristics of both traditional storage systems (persistent) and traditional memory systems (byte-Addressable). However, they suffer from high write latency and have a limited write endurance. Researchers have proposed hybrid memory systems that combine DRAM and NVM, utilizing the lower latency of the DRAM to hide some of the shortcomings of the NVM-improving system's performance by caching resident NVM data in the DRAM. However, this can nullify the persistency of the cached pages, leading to a question of trade-offs in terms of performance and reliability. In this paper, we propose Stealth-Persist, a novel architecture support feature that allows applications that need persistence to run in the DRAM while maintaining the persistency features provided by the NVM. Stealth-Persist creates the illusion of a persistent memory for the application to use, while utilizing the DRAM for performance optimizations. Our experimental results show that Stealth-Persist improves the performance by 42.02% for persistent applications.