CRUSHED SALT RECONSOLIDATION AT ELEVATED TEMPERATURES
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.
The Arquin Corporation has developed a new method of constructing CMU (concrete masonry unit) walls. This new method uses polymer spacers connected to steel wires that serve as reinforcing as well as a means of accurately placing the spacers so that the concrete block can be dry stacked. The hollows of the concrete block are then filled with grout. As part of a New Mexico Small Business Assistance Program (NMSBA), Sandia National Laboratories conducted a series of tests that dynamically loaded wall segments to compare the performance of walls constructed using the Arquin method to a more traditional method of constructing CMU walls. A total of four walls were built, two with traditional methods and two with the Arquin method. Two of the walls, one traditional and one Arquin, had every third cell filled with grout. The remaining two walls, one traditional and one Arquin, had every cell filled with grout. The walls were dynamically loaded with explosive forces. No significant difference was noted between the performance of the walls constructed by the Arquin method when compared to the walls constructed by the traditional method.
Abstract not provided.
Abstract not provided.
In this report, we examine the propagation of tensile waves of finite deformation in rubbers through experiments and analysis. Attention is focused on the propagation of one-dimensional dispersive and shock waves in strips of latex and nitrile rubber. Tensile wave propagation experiments were conducted at high strain-rates by holding one end fixed and displacing the other end at a constant velocity. A high-speed video camera was used to monitor the motion and to determine the evolution of strain and particle velocity in the rubber strips. Analysis of the response through the theory of finite waves and quantitative matching between the experimental observations and analytical predictions was used to determine an appropriate instantaneous elastic response for the rubbers. This analysis also yields the tensile shock adiabat for rubber. Dispersive waves as well as shock waves are also observed in free-retraction experiments; these are used to quantify hysteretic effects in rubber.
The formation of silica scale is a problem for thermoelectric power generating facilities, and this study investigated the potential for removal of silica by means of chemical coagulation from source water before it is subjected to mineral concentration in cooling towers. In Phase I, a screening of many typical as well as novel coagulants was carried out using concentrated cooling tower water, with and without flocculation aids, at concentrations typical for water purification with limited results. In Phase II, it was decided that treatment of source or make up water was more appropriate, and that higher dosing with coagulants delivered promising results. In fact, the less exotic coagulants proved to be more efficacious for reasons not yet fully determined. Some analysis was made of the molecular nature of the precipitated floc, which may aid in process improvements. In Phase III, more detailed study of process conditions for aluminum chloride coagulation was undertaken. Lime-soda water softening and the precipitation of magnesium hydroxide were shown to be too limited in terms of effectiveness, speed, and energy consumption to be considered further for the present application. In Phase IV, sodium aluminate emerged as an effective coagulant for silica, and the most attractive of those tested to date because of its availability, ease of use, and low requirement for additional chemicals. Some process optimization was performed for coagulant concentration and operational pH. It is concluded that silica coagulation with simple aluminum-based agents is effective, simple, and compatible with other industrial processes.
The Technical Area V (TA-V) Seismic Assessment Report was commissioned as part of Sandia National Laboratories (SNL) Self Assessment Requirement per DOE O 414.1, Quality Assurance, for seismic impact on existing facilities at Technical Area-V (TA-V). SNL TA-V facilities are located on an existing Uniform Building Code (UBC) Seismic Zone IIB Site within the physical boundary of the Kirtland Air Force Base (KAFB). The document delineates a summary of the existing facilities with their safety-significant structure, system and components, identifies DOE Guidance, conceptual framework, past assessments and the present Geological and Seismic conditions. Building upon the past information and the evolution of the new seismic design criteria, the document discusses the potential impact of the new standards and provides recommendations based upon the current International Building Code (IBC) per DOE O 420.1B, Facility Safety and DOE G 420.1-2, Guide for the Mitigation of Natural Phenomena Hazards for DOE Nuclear Facilities and Non-Nuclear Facilities.
Nuclear Science and Engineering
We describe a method that enables Monte Carlo calculations to automatically achieve a user-prescribed error of representation for numerical results. Our approach is to iteratively adapt Monte Carlo functional-expansion tallies (FETs). The adaptivity is based on assessing the cellwise 2-norm of error due to both functional-expansion truncation and statistical uncertainty. These error metrics have been detailed by others for one-dimensional distributions. We extend their previous work to threedimensional distributions and demonstrate the use of these error metrics for adaptivity. The method examines Monte Carlo FET results, estimates truncation and uncertainty error, and suggests a minimumrequired expansion order and run time to achieve the desired level of error. Iteration is required for results to converge to the desired error. Our implementation of adaptive FETs is observed to converge to reasonable levels of desired error for the representation of four distributions. In practice, some distributions and desired error levels may require prohibitively large expansion orders and/or Monte Carlo run times.
Desalination
The formation of mineral scale deposits on membranes is a pervasive and expensive problem for the water treatment industry. A series of experiments run on a laboratory-scale reverse osmosis membrane system examined the fouling of membranes when the feed water was spiked with organic and inorganic foulants. Alginic acid was used as the organic foulant and silica was used as the inorganic foulant. Studies involving interactions of these two foulants have not previously been reported in literature. Experiments were run with each foulant individually to characterize fouling at different velocities and pressures. Experiments were then run using both foulants together to characterize the synergistic effects on membrane fouling. One set of experiments with both foulants demonstrated that alginic acid inhibits silica fouling on reverse osmosis membranes. Further experiments indicated that alginic acid added after silica fouling had already occurred was able to remove silica scale from the membrane and restore permeate flux. © 2009 Elsevier B.V.
Nuclear Science and Engineering
We describe a method that enables Monte Carlo calculations to automatically achieve a user-prescribed error of representation for numerical results. Our approach is to iteratively adapt Monte Carlo functional-expansion tallies (FETs). The adaptivity is based on assessing the cellwise 2-norm of error due to both functional-expansion truncation and statistical uncertainty. These error metrics have been detailed by others for one-dimensional distributions. We extend their previous work to threedimensional distributions and demonstrate the use of these error metrics for adaptivity. The method examines Monte Carlo FET results, estimates truncation and uncertainty error, and suggests a minimumrequired expansion order and run time to achieve the desired level of error. Iteration is required for results to converge to the desired error. Our implementation of adaptive FETs is observed to converge to reasonable levels of desired error for the representation of four distributions. In practice, some distributions and desired error levels may require prohibitively large expansion orders and/or Monte Carlo run times.
SIAM Journal on Scientific Computing
We examine a new method of producing reduced order models for LTI systems which attempts to minimize a bound on the peak error between t he original and reduced order models subject to a bound on the peak value of the input. The method, which can be implemented by solving a set of linear programming problems that are parameterized v ia a single scalar quantity, is able to minimize an error bound subject to a number of moment matc hing constraints. Moreover, because all optimization is performed in the time domain, the method can also be used to perform model reduction for infinite dimensional systems, rather than being restricted to finite order state space descriptions. We begin by contrasting the method we present her e with two classes of standard model reduction algorithms, namely, moment matching algorithms and singular value-based methods. After motivating the class of reduction tools we propose, we describe the algorithm (which minimizes the Ll norm of the difference between the original and reduced order impulse responses) and formulate the corresponding linear programming problem that is solved during each iteration of the algorithm. We then prove that, for a certain class of LTI systems, the metho d we propose can be used to produce reduced order models of arbitrary accuracy even when the original system is infinite dimensional. We then show how to incorporate moment matching constraints into the basic error bound minimization algorithm, and present three examples which utilize the techni ques described herein. We conclude with some comments on extensions to multi-input, multi-output systems, as well as some general comments for future work. © 2010 Society for Industrial and Applied Mathematics.
Journal of Vacuum Science and Technology B
The authors experimentally demonstrate a resonant hybridization between the magnetic dipole structural resonance in the permeability of a fishnet metamaterial and an electric dipole material resonance in the permittivity of the dielectric spacer layer. The hybrid resonances in the permeability and the negative index response exhibit an anticrossing behavior. A simple analytic model and numerical simulations using a rigorous coupled-wave analysis are in excellent qualitative agreement with the experiment. © 2010 American Vacuum Society.
Proceedings of the 2010 American Control Conference, ACC 2010
We examine a new method of producing reduced order models for LTI systems which attempts to minimize a bound on the peak error between the original and reduced order models subject to a bound on the peak value of the input. The method, which can be implemented by solving a set of linear programming problems that are parameterized via a single scalar quantity, is able to minimize an error bound subject to a number of moment matching constraints.Moreover, because all optimization is performed in the time-domain, the method can also be used to perform model reduction for infinite dimensional systems, rather than being restricted to finite order state space descriptions. We begin by contrasting the method we present here to two classes of standard model reduction algorithms, namely moment matching algorithms and singularvalue- based methods. After motivating the class of reduction tools we propose, we describe the algorithm (which minimizes the L1 norm of the difference between the original and reduced order impulse responses) and formulate the corresponding linear programming problem that is solved during each iteration of the algorithm. We then show how to incorporate moment matching constraints into the basic error bound minimization algorithm, and present an example which utilizes the techniques described herein. We conclude with some general comments for future work, including a nonlinear programming formulation with potential implementation benefits. © 2010 AACC.
Journal of Electronic Materials
New Pb-free alloys that are variations of the Sn-Ag-Cu (SAC) ternary system, having reduced Ag content, are being developed to address the poor shock load survivability of current SAC305, SAC396, and SAC405 compositions. However, the thermal mechanical fatigue properties must be determined for the new alloys in order to develop constitutive models for predicting solder joint fatigue. A long-term study was initiated to investigate the time-independent (stress-strain) and time-dependent (creep) deformation properties of the alloy 98.5Sn-1.0Ag-0.5Cu (wt.% SAC105). The compression stress-strain properties, which are reported herein, were obtained for the solder in as-cast and aged conditions. The test temperatures were -25°C, 25°C, 75°C, 125°C, and 160°C and the strain rates were 4.2 × 10 -5 s -1 and 8.3 × 10 -4s -1. The SAC105 performance was compared with that of the 95.5Sn-3.9Ag-0.6Cu (SAC396) solder. Like the SAC396 solder, the SAC105 microstructure exhibited only small microstructural changes after deformation. The stress-strain curves showed work-hardening behavior that diminished with increased temperature to a degree that indicated dynamic recrystallization activity. The aging treatment had a small effect on the stress-strain curves, increasing the degree of work hardening. The yield stresses of SAC105 were significantly less than those of SAC396. The aging treatment caused a small drop in yield stress, as is observed with the SAC396 material. The static modulus values of SAC105 were lower than those of SAC396 and exhibited both temperature and aging treatment dependencies that differed from those of the SAC396 material. These trends clearly show that the stress-strain behavior of Sn-Ag-Cu solders is sensitive to the specific, individual composition. © 2009 U.S. Department of Energy.
Proceedings of the 2010 American Control Conference, ACC 2010
Inspired by prior work in the design of switched feedback controllers for second order systems, we develop a switched state feedback control law for the stabilization of LTI systems of arbitrary dimension. The control law operates by switching between two static gain vectors in such a way that the state trajectory is driven onto a stable n - 1 dimensional hyperplane (where n represents the system dimension). We begin by briefly examining relevant geometric properties of the phase portraits in the case of two-dimensional systems and show how these geometric properties can be expressed as algebraic constraints on the switched vector fields that are applicable to LTI systems of arbitrary dimension. We then describe an explicit procedure for designing stabilizing controllers and illustrate the closed-loop transient performance via two examples. © 2010 AACC.
48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
Wind tunnel experiments up to Mach 3 have provided fluctuating wall pressure spectra beneath a supersonic turbulent boundary layer to frequencies reaching 400 kHz to help reconcile conflicts in the historical data. Data were acquired using piezoresistive silicon pressure transducers effective at low- and mid-range frequencies, supplemented by piezoelectric quartz sensors to detect high frequency events, and combined into a single curve describing the wall pressure spectrum. Attenuation at high frequencies due to limited spatial resolution was a dominant problem, but the well-known Corcos correction successfully recovered the true amplitude within its range of applicability, revealing the ω-1 dependence for fluctuations within the logarithmic region of the boundary layer. Wind tunnel noise and vibration were removed by a noise cancellation algorithm based upon adaptive filtering, showing the power spectra are essentially flat at low frequency and do not exhibit the theorized ω2 dependence. The integrated pressure fluctuation intensities are appreciably greater than the historical supersonic database when data corrections are applied, but consistent when neglected, suggesting that past experiments may be biased low.
Chemical Communications
Conditions have been found whereby it is possible to reversibly store >11 wt% hydrogen through the direct hydrogenation of MgB2 to Mg(BH4)2. © 2010 The Royal Society of Chemistry.
International Conference on the Physics of Reactors 2010, PHYSOR 2010
A multi-group cross section collapsing code, YGROUP, has been developed to speed up deterministic particle transport simulations by reducing the number of discrete energy groups while maintaining computational transport accuracy. The YGROUP code leverages previous studies based on the "contributon" approach to automate group selection. First, forward and adjoint deterministic transport calculations are performed on a smaller problem model, or on one section of a large problem model representative of problem physics using a fine group structure. Then, the calculated forward flux and adjoint function moments are used by YGROUP to collapse the fine group cross section library and generate a problem-dependent broad group cross section library. Finally, the broad group library is used for new transport calculations on the full scale/refined problem model. YGROUP provides several weighting options to collapse the cross section library, including flat, flux, and contributon (the product of forward flux and scalar adjoint moments). Users can also specify fine groups in specific energy ranges of interest to be reserved after collapsing. YGROUP also can be used to evaluate the Feynman-Y asymptote characterizing neutron multiplicity.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.