Publications

Results 98601–98700 of 99,299

Search results

Jump to search filters

Security alarm communication and display systems development

Waddoups, I.G.

Sandia National Laboratories has developed a variety of alarm communication and display systems for a broad spectrum of users. This paper will briefly describe the latest systems developed for the Department of Energy (DOE), the Department of Defense (DoD), and the Department of State (DOS) applications. Applications covered will vary from relatively small facilities to large complex sites. Ongoing system developments will also be discussed. The concluding section will summarize the practical, implementable state-of-the-art features available in new systems. 6 figs.

More Details

The mechanical behavior of microcellular foams

Ozkul, M.H.; Mark, J.E.; Aubert, J.H.

The mechanical behavior of microcellular open-cell foams prepared by a thermally induced phase separation process are investigated. The foams studied were prepared from isotactic polystyrene, polyacrylonitrile, and poly(4-methyl-1-pentene) (rigid foams), and polyurethane and Lycra (elastomeric foams). Their densities were in the range 0.04--0.27 g/cm3. Conventional polystyrene foams were used for comparison. The moduli and collapse stresses of these foams were measured in compression and compared with the current constitutive laws which relate mechanical properties to densities. A reinforcement technique based on the in-situ precipitation of silica was used to improve the mechanical properties. 13 refs., 4 figs., 3 tabs.

More Details

Considerations relating to pulsed-beam modification of materials

Myers, S.M.; Follstaedt, D.M.; Bourcier, R.J.; Dugger, M.T.; Mcintyre, D.C.; Rader, D.J.

Ion implantation has been shown to produce unique improvements in the properties of a wide range of materials. This technology has been extensively used for doping of semiconductors, where the required doses and implantation depths are relatively modest and readily achieved with commercial implanters. Other applications of ion implantation currently being pursued at a commercial level include the synthesis of buried second-phase layers in Si and the improvement of metal surface properties such as hardness, friction, wear rate, and corrosion. However, these applications have been severely constrained by the costs of treating large surface areas with the high ion doses required, and by the need to produce modified layers thicker than the range of the sub-MeV ions available from presently available commercial high-flux ion implanters. It therefore seems worthwhile to consider whether pulsed ion accelerators may offer advantages for such applications by providing high ion fluxes at MeV energies. The previously reported applications of pulsed accelerators to materials modification have used sub-MeV ion energies. The purpose of this article is to being these considerations the perspective of materials scientists who use ion implantation. We comment on needed extensions in implantation capabilities while leaving to others the question of whether these needs can be met with pulsed-beam technology. Further, in order to illustrate the kinds of beneficial materials modifications that can be achieved with implantation, we provide examples from recent work at Sandia National Laboratories, where large improvements have been realized in the tribological properties and strengths of Fe and A{ell} alloys. 10 refs., 6 figs.

More Details

Experience with more productive information systems design at Sandia National Laboratories

Sharp, J.K.

The natural language technique was just one of many approaches to information system design in 1987. The success of this approach convinced management of the viability of this new'' approach. A group was created to use natural language in information system specifications and designs. Two of the projects undertaken by this group will be reviewed. The first is a quality database that allows for the management of the process that certifies production capabilities for major weapon components and the second tracks command and control status of weapons. A third external project involving nuclear disarmament will also be discussed.

More Details

WIPP (Waste Isolation Pilot Plant) performance assessment: A 1990 snapshot of compliance with 40 CFR 191, Subpart B

Marietta, Melvin G.

The United States Department of Energy (DOE) plans to use the Waste Isolation Pilot plant (WIPP) in southeastern New Mexico for disposal of transuranic wastes generated by defense programs. The DOE must first demonstrate compliance with the Environmental Protection Agency's (EPA) Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR Part 191) hereafter called the Standard. The Standard was vacated by a Federal Court of Appeals in 1987 and is undergoing revision; by agreement with the State of New Mexico the DOE will continue to evaluate repository performance with respect to the Standard as first promulgated until a new version is available. This paper reviews the results of a 1989 preliminary demonstration of the performance-assessment methodology that will be used by the WIPP project ultimately to assess compliance with the Standard. The report also describes conceptual and numerical improvements in the performance-assessment methodology made during 1990, and summarizes the progress made toward achieving the probabilistic assessment of repository performance required for regulatory compliance. 13 refs., 4 figs.

More Details

Microcellular foams prepared from demixed polymer solutions

Aubert, James H.

Low-density, microcellular polymer foams have numerous applications as structural supports in high-energy physics experiments, in catalysis, ion exchange, and filtration, and for a variety of biomedical uses. A versatile method to prepare such foams is by thermally-induced phase separation (TIPS) of polymer solutions. Demixed solutions can be transformed into a foam by freezing the demixed solution and removing the solvent by freeze-drying. The morphology of these foams is determined by the the thermodynamics and kinetics of phase separation. A model of both the early and late stage structure development for demixed polymer solutions will be presented. For semi-crystalline polymers, gels can be prepared by crystallizing the polymer from solution, either a homogeneous solution or a demixed solution. Foams can be prepared from these gels by the supercritical extraction of the solvent. By understanding and utilizing the phase separation behavior of polymer solutions, engineered microcellular foams can be prepared. To design the foams for any application one must be able to characterize their morphology. Results will be presented on the morphological characterization of these foams and the relationship of the morphology to their processing history. 14 refs., 12 figs.

More Details

The preparation of InAsSb/InSb SLS (strained-layer superlattice) and InSb photodiodes by MOCVD

Biefeld, Robert M.

Infrared absorption and photoluminescence have been demonstrated for InAs{sub 1-x}Sb{sub x}/InSb strained-layer superlattices (SLS's) in the 8--15 {eta}m region for As content less than 20%. This extended infrared activity is due to the type II heterojunction band offset in these SLS's. The preparation of the first MOCVD grown p-n junction diode was achieved by using dimethyltellurium as an in-type dopant. Several factors, such as background doping and dopant profiles affect the performance of this device. InSb diodes have been prepared using tetraethyltin. The resulting current-voltage characteristics are improved over those of diodes grown previously using dimethyltellurium. Doping levels of 8 {times} 10{sup 15} to 5 {times} 10{sup 18} cm{sup {minus}3} and mobilities of 6.7 {times} 10{sup 4} to 1.1 {times} 10{sup 4} cm{sup 2}/Vs have been measured for Sn doped InSb. SLS diode structures have been prepared using Sn and Cd as the dopants. Structures prepared with p-type buffer layers are more reproducible. 5 refs., 4 figs.

More Details

MELCOR analysis of the TMI-2 accident

Boucheron, Edward A.

This paper describes the analysis of the Three Mile Island-2 (TMI-2) standard problem that was performed with MELCOR. The MELCOR computer code is being developed by Sandia National Laboratories for the Nuclear Regulatory Commission for the purpose of analyzing severe accident in nuclear power plants. The primary role of MELCOR is to provide realistic predictions of severe accident phenomena and the radiological source team. The analysis of the TMI-2 standard problem allowed for comparison of the model predictions in MELCOR to plant data and to the results of more mechanistic analyses. This exercise was, therefore valuable for verifying and assessing the models in the code. The major trends in the TMI-2 accident are reasonably well predicted with MELCOR, even with its simplified modeling. Comparison of the calculated and measured results is presented and, based on this comparison, conclusions can be drawn concerning the applicability of MELCOR to severe accident analysis. 5 refs., 10 figs., 3 tabs.

More Details

Kinetics of molecular beam epitaxy: Effect of ion-induced sputtering

Richards, P.M.

Steady state roughness of surfaces growing by molecular beam epitaxy is investigated by Monte Carlo simulations under conditions where an ion beam is also present which sputters adatoms off the surface. If the sputtering is random, it only increases the roughness. But if the sputtering probability is strongly dependent on the binding energy of an adatom within a cluster or island, the ions can have a smoothening effect. Physical arguments are given in support of the results. 8 refs., 4 figs.

More Details

Photovoltaic concentrator module reliability: Failure modes and qualification

Richards, Elizabeth H.

The purpose of this paper is to discuss the current issues of interest in PV concentrator module reliability. Before describing in detail the reliability concerns about PV concentrator modules, it should be emphasized that, with proper design and attention to quality control, there is nothing to prevent concentrator modules from being as reliable as crystalline-silicon flat-plate modules have proven to be. Concentrator modules tested outdoors, as well as in the first-generation systems, have generally been reliable, and no degradation in cell output has been observed. Also, although they are not included in this paper, there are a few items currently of concern with the reliability of other PV module technologies that are not issues with PV concentrator technology, such as the stability of amorphous-silicon efficiencies and concerns about EVA encapsulation.

More Details

Flow behavior of Ti-24Al-11Nb at high strain rates

Bourcier, R.J.

The deformation and crack initiation behavior of Ti-24Al-11Nb has been examined over a temperature range of 298 to 923 K and for strain rates from 10{sup {minus}4}/s to 10{sup 2}/s. Tests performed in compression indicate much lower strain hardening at 10{sup 2}/s than at either 10{sup {minus}1}/s or 10{sup {minus}4}/s at all temperatures. Associated with this behavior is the occurrence of non-uniform, localized deformation bands at 10{sup 2}/s. An analysis indicates that adiabatic deformation conditions predominate at 10{sup 2}/s and that these result in adiabatic softening. Furthermore, as a result of non-uniform deformation and adiabatic heating, this Ti{sub 3}-Al-based alloy is actually more resistant to strain-induced microcrack initiation at 10{sup 2}/s than at 10{sup {minus}4}/s during room temperature testing. 16 refs., 7 figs.

More Details

On the construction of constitutive equations for large deformations

Herrmann, W.

This paper attempts to give an elementary review of the kinematics of large deformations with a view to illustrating some of the underlying geometric concepts, and then goes on to review some basic features of elastic, hypoelastic, and rate type constitutive equations relevant to their use in numerical methods. Since some recent work has emphasized working in a rotated'' intermediate configuration, one in which the rigid body rotation has been backed out, results relating to this configuration are included, otherwise all of the results have been read off directly from Truesdell and Toupin ( ) or Truesdell and Noll ( ). Finally, results given by Nemat-Nasser ( ) are quoted which reconcile some generalizations of infinitesimal plasticity and some remarks are made relevant to the introduction of tensor internal state variables. Thermodynamic effects, although important in calculations, are omitted to emphasize kinematical effects. Because recent authors have used different names and symbols for stress and strain tensors, it has been found necessary to give a self contained if abbreviated development of the kinematics, which, however, allows a compact discussion of constitutive equations.

More Details

Formation of catalysts in inverse micelles

Wilcoxon, Jess P.

We report formation of several small colloidal metal catatlysts in inverted micelle (oil-continuous) systems. These materials have demonstrated catalytic activity in situ (i.e. unsupported). The range of solvents possible in this process is large, including all saturated hydrocarbons, cyclic hydrocarbons (e.g. cyclohexane) and aromatics (e.g. toluene, xylene). Three classes of micelle system were investigated, nonionic, anionic, and cationic. Nonionic types allow precise size control but in general do not act as strong stabilizing agents at high temperatures. Cationics can be chosen to provide this permanent stability, providing both charge and steric stabilization. Metal systems formed include Rh, Ni, NiB, MoO{sub 2}, Pd, Au and Ag and alloys. Selected examples are given. 4 figs.

More Details

Core structure heat-up and material relocation in a BWR short-term station blackout accident

Schmidt, Rodney C.

This paper presents an analytical and numerical analysis which evaluates the core-structure heat-up and subsequent relocation of molten core materials during a NWR short-term station blackout accident with ADS. A simplified one-dimensional approach coupled with bounding arguments is first presented to establish an estimate of the temperature differences within a BWR assembly at the point when structural material first begins to melt. This analysis leads to the conclusions that the control blade will be the first structure to melt and that at this point in time, overall temperature differences across the canister-blade region will not be more than 200 K. Next, a three-dimensional heat-transfer model of the canister-blade region within the core is presented that uses a diffusion approximation for the radiation heat transfer. This is compared to the one-dimensional analysis to establish its compatibility. Finally, the extension of the three-dimensional model to include melt relocation using a porous media type approximation is described. The results of this analysis suggest that under these conditions significant amounts of material will relocate to the core plate region and refreeze, potentially forming a significant blockage. The results also indicate that a large amount of lateral spreading of the melted blade and canister material into the fuel rod regions will occur during the melt progression process. 22 refs., 18 figs., 1 tab.

More Details

Fatigue reliability of wind turbine components

Veers, Paul S.

Fatigue life estimates for wind turbine components can be extremely variable due to both inherently random and uncertain parameters. A structural reliability analysis is used to qualify the probability that the fatigue life will fall short of a selected target. Reliability analysis also produces measures of the relative importance of the various sources of uncertainty and the sensitivity of the reliability to each input parameter. The process of obtaining reliability estimates is briefly outlined. An example fatigue reliability calculation for a blade joint is formulated; reliability estimates, importance factors, and sensitivities are produced. Guidance in selecting distribution functions for the random variables used to model the random and uncertain parameters is also provided. 5 refs., 9 figs., 1 tab.

More Details

Status of concentrator collector and high-efficiency concentrator cell development

Gee, James M.

Photovoltaic concentrator collectors are an attractive option for utility-scale photovoltaic power plants. This paper reviews the current status of photovoltaic concentrator collector and cell development. Included in the review is a discussion of the economic motivation for concentrators, a summary of recent concentrator collector and cell development, and a description of a major new program to accelerate development and commercial introduction of concentrator collectors. 21 refs., 1 fig., 3 tabs.

More Details

Video motion detection for physical security applications

Matter, John C.

Physical security specialists have been attracted to the concept of video motion detection for several years. Claimed potential advantages included additional benefit from existing video surveillance systems, automatic detection, improved performance compared to human observers, and cost effectiveness. In recent years significant advances in image processing dedicated hardware and image analysis algorithms and software have accelerated the successful application of video motion detection systems to a variety of physical security applications. Currently Sandia is developing several advanced systems that employ image processing techniques for a broader set of safeguards and security applications. TCATS (Target Cueing and Tracking System) uses a set of powerful, flexible, modular algorithms and software to alarm on purposeful target motion. Custom TCATS hardware optimized for perimeter security applications is currently being evaluated with video input. VISDTA (Video Imaging System for Detection, Tracking, and Assessment) uses some of the same TCATS algorithms and operates with a thermal imager input. In the scan mode, VISDTA detects changes in a scene from the previous image at a given scan point; in the stare mode, VISDTA detects purposeful motion similar to TCATS.

More Details

Adhesion at ceramic interfaces

Michalske, Terry A.

Many of the properties associated with ceramic materials such as high hardness, high dielectric constant, refractoriness, and good optical properties will play a critical role in the development of devices for new and emerging technologies. In many cases, the combination of properties that is required demands that a composite material be designed to fulfill these complex materials needs. The increasing emphasis upon composite materials design and performance necessarily focuses greater attention upon the structure and properties of interfaces in ceramic materials. One on the most important aspects of interfacial behavior is the adhesive stability. As an example, high hardness ceramic coatings for tribological applications require a high degree of interfacial adhesion with the underlying substate material. Alternatively it has been shown that fiber reinforced ceramic composites that are designed for high fracture toughness must contain weak interfaces that allow for fiber pull-out to toughen the instrinsically brittle ceramic matrix. Our ability to design ceramic interfaces for specific interfacial adhesive behavior dictates that we develop a full understanding of the factors that control the adhesive bond in these systems. We report on the use of continuum fracture mechanics techniques to identify the molecular source of adhesion between oxide surfaces and introduce a new approach to measuring interfacial adhesive forces using an Interfacial Force Microscope.

More Details

Joint computational/experimental aerodynamics research on a reentry vehicle

Oberkampf, W.L.; Aeschliman, D.P.

Although computational aerodynamics simulation has been taking more responsibility during recent years, wind tunnel experimentation has continued to play the major role in flight vehicle analysis and design.This role, however, is changing because of the great strides in the capability and confidence in numerical simulations. For a small, well defined, class of supersonic and hypersonic flow problems, high quality numerical solutions are now believed to represent the physics of the problem more accurately than a wind tunnel experimental can simulate the free flight conditions. An example of this is the supersonic or hypersonic, laminar, perfect gas flow over a spherically blunted cone at low angle of attack. In this paper, aerodynamic force and moment measurements and flow visualization results are presented for a reentry vehicle configuration at Mach 8. All of the results were obtained in the Sandia Mach 8 long duration, blow-down, hypersonic wind tunnel. The basic vehicle configuration is a spherically blunted cone with a slice parallel with the axis of the vehicle. Onto the slice portion of the vehicle can be attached flaps with three different deflection angles, 10, 20 and 30 deg. Flow visualization results include surface oil flow, spark Schlieren, and liquid crystal photographs. 1 ref., 7 figs.

More Details

A theoretical investigation of effective surface recombination velocity in AlGaAs/GaAs heteroface solar cells

Gee, James M.

An AlGaAs window layer is used in high-efficiency GaAs solar cells to reduce carrier recombination at the front surface. Free surfaces of III-V semiconductors have a high density of surface states that serve as recombination sites and create a depletion region at the front surface. We have performed a theoretical investigation of front-surface recombination that includes the effect of a surface space-charge layer. It was found that the surface space-charge layer can have a profound effect on front-surface recombination for thin or lightly doped window layers. 15 refs., 5 figs., 1 tab.

More Details

Natural-analog studies for partial validation of conceptual models of radionuclide retardation at the Waste Isolation Pilot Plant (WIPP)

Siegel, Malcolm

Transport by groundwater within the Culebra Dolomite, an aquifer above the Waste Isolation Pilot Plant (WIPP), is the most probable mechanism for long-term release of radionuclides to the accessible environment. Radionuclides could be retarded by sorption if the groundwater is exposed to sufficient amounts of fracture-lining clays. In this natural-analog study, distributions of U and trace metals have been examined to constrain the strength of clay/solute interactions within the Culebra. Uranium solid/liquid distribution ratios, calculated from U concentrations of groundwaters and consanguineous fracture-filling clays, range from {approximately}80 to 800 m{ell}/g and imply retardation factors of 60 to 500 using a fracture-flow model. Retardation factors inferred from uranium-series disequilibria and {sup 14}C ages in Culebra groundwaters alone are much lower ({approximately}10), implying that clays may contain a significant unreactive component of U. Such a possibility is corroborated by Rb/Sr ages; these imply long-term stability of the clays,with resetting occurring more than 250 Ma ago. Factor analysis and mass-balance calculations suggest, however, that Mg-rich clays are dissolving in Pleistocene-age groundwaters and/or are converting to Na-rich smectites, and that B and Li are taken up from the water by the clays. Apparently, the solution chemistry reflects gradual equilibration of clays with groundwater, but thus far the bulk of the clays remain structurally intact. Measurements of the distribution of U in the Culebra will be more meaningful if the inert and exchangeable components of the U content of the clays can be quantified. 26 refs., 3 figs., 2 tabs.

More Details

The role of chemical interactions in ion-solid processes

Dodson, Brian W.

Computer simulation of low-energy ion-solid processes has greatly broadened in scope in recent years. In particular, realistic descriptions of the ion-solid and solid-solid interactions can now be utilized. The molecular dynamics technique, in which the equations of motion of the interacting atoms are numerically integrated, can now be used to characterize ion-solid interactions in a range of model material systems. Despite practical limitations of this procedure, a number of substantial results have appeared. The available results are examined to investigate the qualitative influence that chemical interactions have on low-energy ion-solid processes. 26 refs., 4 figs.

More Details

Silicon nitride formation from a silane-nitrogen ECR (electron cyclotron resonance) plasma

Barbour, J.C.

Good quality, low temperature silicon nitride and oxynitride films were deposited downstream from an electron cyclotron resonance (ECR) plasma source using SiH{sub 4} and N{sub 2} gas mixtures. The Si/N ratio and H content in the deposited films were determined using Rutherford backscattering spectrometry (RBS)and elastic recoil detection (ERD). The H concentration was minimum for films with compositions closest to that of stoichiometric Si{sub 3}N{sub 4}. The optimum conditions for producing a stoichiometric Si{sub 3}N{sub 4}were: a SiH{sub 4}/N{sub 2} flow ratio between 0.1 and 0.2, and an electrically isolated sample far from the ECR source. Infrared absorption spectra showed that as the film composition changed from N rich to Si rich the dominant bonds associated with H changed from N-H to Si-H. The addition of O{sub 2} to the background gas formed an oxynitride with a low H content similar to the stoichiometric Si{sub 3}N{sub 4} 10 refs., 4 figs., 2 tabs.

More Details

A Josephson junction to FET high speed line driver made of TlCaBaCuO

Martens, J.S.; Ginley, D.S.; Beyer, J.B.; Nordman, J.E.; Hohenwarter, G.K.G.

We have used a Tl-Ca-Ba-Cu-O superconducting flux flow transistor (SFFT) as an active impedance converter between Josephson and FET circuitry. The input of the flux flow device is a control line of low impedance that can be driven by a tunnel junction. The output is the signal across the SFFT which is made of a parallel array of weak links. The output impedance is typically greater than 5 {Omega} with a maximum voltage swing of over 100 mV into a 50 {Omega} system. The switching of an all-Nb junction induced a 90 mV voltage swing at the FET input and over 200 mV at the FET output. The line driver can operate anywhere between 4.2K and 85K with minor changes in speed ({plus minus}5 ps) and output level ({plus minus}10 mV). The switching time measured was about 100 ps and was fixture limited. 13 refs., 5 figs.

More Details

Archimedes: A system that plans and executes mechanical assemblies

Strip, David R.

Archimedes is a prototype mechanical assembly system which generates and executes robot assembly programs from a CAD model input. The system addresses the unrealized potential for flexibility in robotic mechanical assembly applications by automating the programming task. Input is a solid model of the finished assembly. Parts relationships and geometric constraints are deduced from the solid model. A rule-based planner generates a generic'' assembly plan that satisfies the geometric constraints, as well as other constraints embodied in the rules. A retargetable plan compiler converts the generic plan into code specific to an application environment. Execution of the compiled plan in a workcell containing an Adept Two robot, a vision system, and other parts handling equipment will be shown on videotape.

More Details

Solid state radioluminescent sources: Mixed organic/inorganic hybrids

Renschler, Clifford L.

This concept brings a condensed source of tritium into close proximity with an inorganic phosphor. That source may thus become the equivalent of many atmospheres of tritium gas pressure. If both phosphor and tritium source material are optically clear, then a lamp's brightness may be made to scale with optical path length. Proof of principle of this concept has been demonstrated and will be described. A theoretical treatment is presented for the results here and for results from aerogel experiments.

More Details

Feasibility for development of a nuclear reactor pressure vessel flaw distribution: Sensitivity analyses and NDE (nondestructive evaluation) capability

Rosinski, S.T.

Pressurized water reactor pressure vessels operate under US Nuclear Regulatory Commission (NRC) rules and regulatory guides that are intended to maintain a low probability of vessel failure. The NRC has also addressed neutron embrittlement of pressurized water reactor pressure vessels by imposing regulations on plant operation. Plants failing to meet the operating criteria specified by these rules and regulations are required, among other things, to analytically demonstrate fitness for service in order to continue safe operation. The initial flaw size or distribution of initial vessel flaws is a key input to the required vessel integrity analyses. A fracture mechanics sensitivity study was performed to quantify the effect of the assumed flaw distribution on the predicted vessel performance under a specified pressurized thermal shock transient and to determine the critical crack size. Results of the analysis indicate that vessel performance in terms of the estimated probability of failure is very sensitive to the assumed flaw distribution. 20 refs., 3 figs., 2 tabs.

More Details

Solid state radioluminescent sources using zeolites

Renschler, Clifford L.

Inorganic zeolites show promise as an alternative to traditional tritium gas tube light sources. Greater proximity of tritium atoms and luminescing centers, as well as greater tritium loading density, have been obtained within the zeolite aluminosilicate matrix. Zeolites are in addition optically clear and radiation stable. The zeolite radioluminescence program is described. Procedures for obtaining light sources are presented and results are discussed. 12 refs., 1 fig.

More Details

Microstructures of cubic Al sub 2 O sub 3 precipitates in oxygen-implanted aluminum

Follstaedt, David M.

The microstructure of Al ion-implanted at room temperature with 17 at. % 0 has been characterized with TEM. The alloy has extremely small (1.5--3.5 nm) oxide precipitates whose crystal structure is interpreted to be a disordered version of {gamma}-Al{sub 2}O{sub 3} having a fcc lattice of O{sup 2{minus}} ions with Al{sup 3+} ions in random interstitial sites. The small sizes can account for the exceptionally high strength of as-implanted alloys: 2500--3300 MPa. Larger precipitates are found when the alloy is annealed 1/2 hour at 550{degree}C, which is consistent with its somewhat lower strength: 800--1600 MPa. 4 figs.

More Details

Solderability of environmentally exposed Sn-plated surfaces

Hosking, F.M.; Sorensen, N.R.

Solderability of Class II environmentally exposed Ni-Sn plated Cu substrates was evaluated with 60Sn-40Pb solder. Tin thickness were 10, 50, and 150 {mu}in. The 10 {mu}in. plating gave the smallest solder meniscus rise. A general decrease in contact angle, or increase in wettability, was observed with increasing Sn plating. The environmental exposures retarded the wetting rate and increased the time to maximum wetting, particularly with only 10 {mu}in. of Sn. Although the solderability of the 50 and 150 {mu}in. surfaces were not significantly affected by the test conditions, an intermediate plating thickness of 100 {mu}in. is preferred for processing flexibility. 13 refs., 6 figs., 1 tab.

More Details

SICADS: Site Independent Configurable Alarm Display System

Weissman, S.J.

SICADS is a generic command, control and display software package which provides the capability to generate security systems which employ different hardware and system configurations, but which are controlled by the same software. SICADS was designed to avoid the task of developing new software for each site. By reusing software, expenses are reduced and software quality is increased. Tested software can be reused without modifications. Configurations of security systems vary from site to site. In many systems, a seemingly minor change in configuration has required significant software modifications. SICADS has been designed to isolate site specific information into data files so that it can be easily tailored to fit a site's requirements without changing the software. Using SICADS, it is possible to generate systems which distribute processing and control over several computers and consoles. 1 fig.

More Details

Stochastic electron beams in the ion-focused regime

Brien, J.R.

The ion-hose instability can catastrophically disrupt a classical electron beam propagating in the ion-focussed regime (IFR). Ion hose is driven by a resonant interaction between the smooth electron-betatron and ion-betatron orbits. In a classical beam phase correlations decay secularly in time c(t)/c(t{sub 0}) {approximately} (t{sub 0}/t){sup n} (0 < n {le} 2). In a stochastic electron beam the electron orbits are chaotic. Such a beam can be immune to resonant instabilities because phase correlations decay exponentially fast c(t)/c(0) {approximately} e{sup {minus}ht} thus destroying the coherence of the electron response on the growth time 1/{gamma}{sub g} if h {approximately} {gamma}{sub g}. Using the same principles we can also envision a stochastic damping cell in which electron phase correlations damp exponentially c(z)/c(0) {approximately} e{sup {minus}hz} thus centering and conditioning a beam more effectively than a classical phase-mixing cell in which c(z)/c(z{sub 0}) {approximately} (z{sub 0}/z){sup n}. A triple-Bennett'' IFR system and the analogous triple-wire'' damping cell are analyzed. The K-entrophy is introduced as a figure-of-merit for such stochastic electron beam systems. 16 refs., 7 figs.

More Details

Formation and stability of As-H bonds in H-implanted GaAs

Stein, H.J.

The chemical bonding and isochronal annealing of H implanted into GaAs at 80 K has been investigated by infrared absorption measurements. Based upon the frequency shift when deuterium is substituted for H, and an equivalent band formation in InAs, assignment of a new band at 2029 cm{sup {minus}1} is made to As-H centers. Bonding of H at interstitial As of and As-vacancy pair which anneals between 150 and 250K is suggested as the structure for the defect. A previously-reported absorption band at 1834 cm{sup {minus}1} assigned to Ga-H centers in H-implanted GaAS increase in intensity when H is released from As-H centers. 15 refs., 5 figs.

More Details

Optical characterization of CdZnTe/CdTe strained quantum wells

Reno, John L.

Strained layer structures have received a great deal of attention due both to their possible application in electronic devices and their intrinsic interest. The study of strained layer quantum wells grown using lattice mismatched materials has been widely developed for III-V semiconductors. Strained layer quantum wells grown using II-VI materials have not been studied nearly so much as those from III-V, but they are a rapidly growing field of semiconductor research. The wide gap II-VI materials are of interest because they are generally direct gap materials. This makes them attractive for optoelectronic devices. The majority of the work on strained layer structures in the wide gap tellurium based materials has focused in two areas. The first is the inclusion of Mn to produce dilute magnetic semiconductors (DMS) strained layers and superlattices. The other area is CdTe/ZnTe quantum wells and superlattices. Some related work has been done with CdZnTe/ZnTe structures. For the CdZnTe/CdTe very little work has been done and the majority of that used very small amounts of Zn. In this paper we will present the growth and optical characterization of Cd{sub 1-x}Zn{sub x}Te/CdTe strained single quantum wells (SSQW) where the Zn concentration ranges from about 10 to 50%. 10 refs., 3 figs.

More Details

Living with Omniback and the 8mm drive

Jones, M.C.

Apollo's OmniBack backup system provides a convenient and effective way of storing network backup information on 8mm tape. In addition it has a journaling facility to write extensive log files, recording the backup process in almost any degree of detail desired. The directory structure and file names used are logical and well-defined. Summary files announce the degree of success of the backup as specified in the work file. The system will run unattended under the UNIX cron command, allowing the backup to be performed during the night when user demands on the network are small and most user files are free.

More Details

Implementation of a QML (Qualified Manufacturer's List) methodology for discrete semiconductors

Halbleib, Laura L.

Agencies that are prime contractors to the Department of Energy (DOE) have developed and are currently instituting a quality initiative which applies a QML-like methodology to a complete discrete semiconductor process. Our goal is to demonstrate that improving the quality of this process is a more efficient method than screening to improve the quality of the semiconductor. The QML methodology, MIL-I-38535, is used to achieve this goal for integrated circuits. Our methods, for discrete semiconductor, applies many of the principles found in this specification to provide structured continuous improvement. Improvement in product performance reduces incoming inspection requirements, resulting in reduced cost and product lead time. This paper describes our methodology for this initiative, which consists of a certification, qualification, and monitoring (CQM) program for the complete semiconductor process. This process includes all technical and administrative activities that effect the quality of a device, beginning with circuit design and ending with the installation of the manufactured device into the electronic component assembly. For the initial application, our CQM program is being implemented on a small signal transistor. Four companies are involved in the partnership: Sandia National Laboratories, a design agency and prime contractor to the DOE; Allied-Signal Aerospace Company, Kansas City Division, a production agency and prime contractor to the DOE (for electronic component assembly); Alliance Electronics, a prime contractor and supplier (for procurement and testing); and Motorola Inc., Semiconductor Products Sector, a manufacturer. 2 refs.

More Details

A program to qualify ductile cast iron for use as a containment material for Type B transport cask

Sorenson, Ken B.

The Department of Energy (DOE) is investigating the use of ductile cast iron (DCI) as a candidate material for radioactive material transportation cask construction. The investigation will include materials testing and full-scale cask testing. The major effort will focus on materials qualification and cask evaluation of the 9 meter and puncture drop test events. The test plan shall include a series of drop tests, and several core bars will be removed from the casting wall for material properties testing. Of particular interest is the evaluation of the material microstructure and fracture toughness parameters. Test instrumentation, used to define cask deceleration loads and strain during the drop tests, will be strategically placed in areas of the greatest structural interest. Part of the testing will include placement of an induced flaw. At the conclusion of the cask drop tests, the induced flaw(s) will be sectioned from the cask body for metallurgical examination. All test results will be documented in the safety analysis report for packaging for submission to the US Nuclear Regulatory Commission (NRC). The goal of this program is a certificate of compliance for DCI from the NRC to transport high-level radioactive materials. The acceptance of DCI within the USA cask design community will offer an alternative to present-day materials for cask construction, and its entry has the potential of providing significant cost-savings.

More Details

Short and long loop manufacturing feedback using a multi-sensor assembly test chip

Sweet, James N.

A three generation family of CMOS silicon test chips for packaging diagnostics has been developed. These Assembly Test Chips (ATC) contain sensors that measure a number of variables associated with assembled IC degradation, including the degree of IC corrosion, handling damage, ESD threat, ppm, moisture, mechanical stress, mobile ion density, bond pad cratering, and high speed logic degradation. The ATC family are intended to give manufacturing feedback in four ways: direct feedback in evaluation of an Assembly Manufacturing Line in an objective, non-intrusive way; before and after comparisons on an assembly production line when an individual process, material, or piece of equipment has been changed; resident lifetime monitor for system package aging and ongoing reliability projection and thermal, mechanical, dc electrical, and high frequency mock-up evaluation of packaging (including multichip) schemes. 14 refs., 6 figs., 2 tabs.

More Details

Infrared absorption in boron carbides: Dependence on isotope and carbon concentration

Stein, H.

Infrared reflectance and transmittance measurements between 500 and 1800 cm{sup {minus}1} were obtained on boron carbides with between 10 and 20 atomic percent carbon. Measurements on both boron and carbon isotopically enriched samples indicate that all prominent modes involve boron motion, and that all but a mode near 950 cm{sup {minus}1} involve carbon motion. Since the spectrum remains qualitatively unaltered as a function of carbon concentration, its prominent features must have a common structural origin. 5 refs., 4 figs., 2 tabs.

More Details

Thermal neutron absorption cross sections for igneous rocks: Newberry Caldera, Oregon

Lysne, P.

The thermal neutron absorption cross sections of geologic materials are of first-order importance to the interpretation of pulsed neutron porosity logs and of second-order importance to the interpretation of steady-state porosity logs using dual detectors. Even in the latter case, uncertainties in log response can be excessive whenever formations are encountered that possess absorption properties appreciably greater than the limestones used in most tool calibrations. These effects are of importance to logging operations directed at geothermal applications where formation vary from igneous to sedimentary and which may contain solution-deposited minerals with very large cross-section values. Most measurements of cross-section values for geologic materials have been made for hydrocarbon production applications. Hence, the specimen materials are sedimentary and clean in the sense that they are not altered by geothermal fluids. This investigation was undertaken to measure cross-section values from a sequence of igneous materials obtained from a single hole drilled in an active hydrothermal system. 3 refs., 1 fig.

More Details

Automated reader for solid-state fission track recorders

Vehar, David W.

An automatic optical track identification/counting system has been developed for counting the total number of fission tracks on a fused quartz solid state track recorder. The system is capable of analyzing up to twenty recorders a day with an operator input of less than two hours. The uncertainty introduced by the counting system is about one percent. 6 refs., 2 figs.

More Details

Theoretical analysis of a runaway electron suppression device

Niemer, K.A.; Gilligan, J.G.; Croessmann, C.D.; England, A.C.

A new runaway electron suppression paddle was designed with the PTA code package to reduce the runaway electron population in the Advanced Toroidal Facility (ATF), Oak Ridge National Laboratory. The PTA code package is a unique application of PATRAN, the Integrated TIGER Series, and ABAQUS for modeling high energy electron impact on magnetic fusion components and materials. By its nature, ATF is susceptible to runaway electron formation and confinement resulting in the production of a high level of hard x-rays near the machine. Four previous stainless steel paddles proved effective in reducing the runaway electron population; however, electrons above 15 MeV have still been observed. Melting and bending were observed in each of the previous paddles, reducing their effectiveness. Scoping experiments are under way to further characterize the runaway electrons in ATF. Data from these experiments will provide insight into runaway electron damage mechanisms. Proposals for the insertion of a new paddle in ATF are being considered. These analyses add to the knowledge of runaway electron damage and will aid in the design of future components to withstand runaway electron discharges in all magnetic fusion devices, including tokamaks. 8 refs., 3 figs., 1 tab.

More Details

A simple, statistically based methodology for system tuning

Benson, M.J.

System tuning often occurs in response to observed changes in key performance indicators. But, how do we determine if a change is significant Our indicators are random variables. They display a natural'' variation. This presentation reviews techniques that may provide a great deal of assistance in determining the significance of a change -- and more importantly -- when and what to tune. The techniques were developed by Dr. William Shewhart at Bell Labs and refined by internationally known quality specialist W. Edwards Deming. Although founded on statistical theory, the techniques are easy to use, require no formal statistical training, and may help you

More Details

Generic quality assurance/quality control guide for photovoltaic concentrator design, development and system installation

Chamberlin, Jay L.

The US Department of Energy National Photovoltaics Program considers the photovoltaic (PV) concentrator technology as a viable entity, likely to penetrate the utility market in the foreseeable future. To achieve this, it has launched the National Photovoltaic Concentrator Initiative under the management of Sandia National Laboratories. The objective of this program is to encourage PV concentrator system design and manufacture, with a view to bringing the energy cost to $0.12/kWh in the next four years and to $0.06/kWh by the year 2000. To achieve these goals, the systems have to perform reliably for 20 to 30 years. This necessitates a stringent quality assurance/quality control (QA/QC) program in all phases of PV concentrator design, production, and installation. In order to assist the PV industry in this effort a project was initiated to provide a generic QA/QC guide, capable of being adapted by any PV concentrator industry to prepare its individual QA/QC plan. The draft plan of the guide was prepared and circulated to various government laboratories and industries involved in PV concentrator work. Their input is now being incorporated into a final document, which will serve as an industry standard. 1 ref., 1 fig.

More Details

Preliminary model of repository chemistry for the Waste Isolation Pilot Plant

Brush, Laurence H.

The design-basis, defense-related, transuranic (TRU) waste to be emplaced in the Waste Isolation Pilot Plant (WIPP) could, if sufficient H{sub 2}O and nutrients were present, produce as much as 1,500 moles of gas per drum of waste. Gas production could pressurize the repository to 150 atm (lithostatic pressure) and perhaps higher. Anoxic corrosion of Fe and Fe-base alloys and microbial degradation of cellulosics are the processes of greatest concern, but radiolysis of brine could also be important. The proposed backfill additives CaCO{sub 3}, CaO, CuSO{sub 4}, KOH, and NaOH may remove or prevent the production of some of the expected gases. Because of the heterogeneous nature of design-basis waste, the Eh and pH of any brine present in WIPP disposal rooms could vary significantly over short distances after reacting with the waste. The WIPP Project is investigating the consequences of gas production and considering engineered alternatives, including reprocessing the waste, to reduce gas production rates or potentials. Reprocessing would also reduce the range of Eh and pH expected for the repository. 12 refs.

More Details

Software safety workshop problem

Cooper, James A.

More than 20 years ago, a philosophy was developed for the design and analysis of hardware systems to ensure that they would perform in a predictably safe manner, even in severe abnormal environments. This philosophy has been scrutinized and tested during the intervening years, and has proved successful in practice. A requirement guiding the development of the philosophy was that the resulting design must be simple enough to be amenable to analysis. The inherent simplicity is a safety attribute, because complex analyses, such as those represented by fault trees containing hundreds of branches, are extremely susceptible to error. There are many examples where such errors led analysts to believe systems were safe when they were not, with disastrous consequences. The purpose of this workshop problem is to determine whether the principles developed to ensure hardware safety are applicable in any way to safety-critical software systems. It is possible that hardware associations with software will need to be considered, but whether or not this is true is left as an aspect of the investigation. In order to put the ground rules in perspective, it will be necessary to establish some framework.

More Details

Self-Magnetically Insulated Transmission Line ( SMILE'') a new version for the RADLAC II linear accelerator

Mazarakis, Michael G.

We present here the SMILE modification of the RADLAC II accelerator which enabled us to produce high quality 12--14 MV, 100 kA beams. It consists of replacing the 40-kA 4-MV beam injector, magnetic vacuum transport and accelerating gaps by a long cathode shank which adds up the voltages of the 8 pulse forming lines. The beam now is produced at the end of the accelerator and is free of all the possible instabilities associated with accelerating gaps and magnetic vacuum transport. Annular beams with {beta}{perpendicular} {le} 0.1 and radius r{sub b} {le} 2 cm are routinely obtained and extracted from a small magnetically immersed foilless electron diode. Results of the experimental evaluation are presented and compared with design parameters and numerical simulation predictions. 6 refs., 7 figs., 1 tab.

More Details

Long pulse diode experiments

Mcclenahan, C.R.

A diode employing a thermionic cathode has produced 80 A beams at 200 kV for at least 6 {mu}s. Moreover, the diode operates at rates as high as 1 Hz. EGUN simulations of the experimental geometry agree with the experiments. Finally, simulation of a proposed diode geometry predicts a 1 kA, 500 kV beam.

More Details

Ray traced scalar fields with shaded polygonal output

Meyers, R.J.; Stephenson, M.B.

An algorithm is presented or rendering scalar field data which reduces rendering times by as much as two orders of magnitude over traditional full resolution image. Less than full resolution sampling of the scalar field is performed using a fast ray tracing method. The sampling grid points are output as a set of screen based gouraud shaded polygons which are rendered in hardware by a graphics workstation. A gradient based variable resolution algorithm is presented which further improves rendering speed. Several examples are presented. 16 refs., 8 figs., 2 tabs.

More Details

Electronic and photonic power applications

Walko, R.J.

Efficient conversion of radioactive decay to electrical power has been the goal of a number of past research efforts. One of these was the Elgin-Kidde nuclear battery. In this concept promethium-147 was used as a beta source which was then mixed with a phosphor to produce a radioluminescent (RL) source of light. The light source was coupled to silicon photovoltaic converters to create electricity. This photoelectric approach is being revisited using tritium based solid state compounds and advanced gas concepts to produce RL light sources being disclosed at this conference. Efficient conversion of the RL light energy to electrical energy imposes certain requirements on the semiconductor converter. These requirements will be discussed. Projections of power source electrical and physical characteristics will be presented based on reasonable design parameter assumptions. The words Power Supply'' usually evoke a vision of a rotating machine or chemical battery. However, today's technology is making increasing use of photonics, where information and even power can be moved through optical fibers. Brighter volumetric RL light sources open a whole new range of photonics-based applications, while solid state tritiated compounds provide the foundation for improved mechanical adaptability and safety. 4 refs., 6 figs., 1 tab.

More Details

All-organic, optically clear, radioluminescent lights

Renschler, Clifford L.

We describe the development of the first all-organic, opitcally clear, radioluminescent (RL) light. Although gas-phase RL lights have been known for many years, a number of advantages accrue to solid state devices. These include greater ruggedness and ease of brightness scale-up. In our systems, tritium is covalently bound to an organic getter, which is dissolved in an organic monomer, along with appropriate scintillating dyes. The entire system cures by monomer polymerization due to the radiation field, resulting in a clear, glowing solid plastic block. We outline here the design considerations employed in producing these materials. 12 refs., 1 fig.

More Details

The Mobile Intrusion Detection and Assessment System (MIDAS)

Arlowe, H.D.; Coleman, D.E.

This paper describes MIDAS, the Mobile Intrusion Detection and Assessment System. MIDAS is a security system that can be quickly deployed to provide wide area coverage for a mobile asset. MIDAS uses two passive infrared imaging sensors, one for intruder detection and one for assessment. Detected targets are tracked while assessment cameras are directed to view the intruder location for operator observation and assessment. The dual sensor design allows simultaneous detection, assessment, and tracking. Control and status information is provided to an operator using a color graphics terminal, touch panel driven menus, and a joystick for control of the assessment sensor pan and tilt. 1 ref., 5 figs.

More Details

Impacts of initial reaction chemistry on direct coal liquefaction processes

Stohl, F.V.

The initial reactions that occur during liquefaction can have significant impacts on process yields and downstream process conditions. Reactions that result in compounds with low molecular weights and decreased boiling points are beneficial, whereas retrogressive reactions, which yield higher molecular weight compounds that are refractory to further processing, give lower yields of desired products. The objectives of this research are to determine the process conditions that give rise to retrogressive reactions during preconversion processing and to identify methods for minimizing the occurrence of these reactions. Initial studies have been performed using dibenzyl ether as a compound to model ether linkages in coal. Results show that retrogressive reactions can occur at temperatures as low as 180{degree}C. The presence of a good hydrogenation catalyst and a hydrogen donor was found to minimize retrogressive reactions, whereas the presence of mineral matter, primarily clay minerals, and ZnCl{sub 2}, enhanced the reactions. 8 refs., 3 figs.

More Details

Summary of NRC-sponsored research on containment integrity

Parks, M.B.

Under the sponsorship of the United States Nuclear Regulatory Commission (NRC), Sandia National Laboratories is conducting several research programs with the common goal of developing a complete methodology for the prediction of the ultimate pressure capacity, at elevated temperatures, of light water reactor (LWR) containment systems. These programs are collectively known as the Containment Integrity Programs. This paper will provide a brief overview of these programs. As a part of the Containment Integrity Programs, a series of scale model containment test have been conducted at Sandia including a 1:8-scale steel model and a 1:6 scale reinforced concrete model. The model were pneumatically pressurized up to point of functional failure; that is, the point at which the containment was no longer effective in preventing significant leakage past its pressure boundary. Also, a 1:10-scale prestressed concrete model has been hydrostatically tested in the United Kingdom under a cooperative agreement with the NRC and others. Because the containment pressure boundary consists of numerous mechanical and electrical penetrations, several independent test programs of typical penetrations have also been performed to determine their leakage behavior when subjected to severe accident conditions. Completed containment penetration research programs include testing of typical compression seals and gaskets, inflatable seals, a personal air lock and electrical penetration assemblies (EPAs). Also, an investigation of leakage due to ovalization of penetration sleeves has been conducted as a part of the scale model test. Currently, testing of the unseating equipment hatch of the 1:6-scale containment model is under way. 23 refs., 3 figs., 2 tabs.

More Details

CONTAIN code calculations for the LA-4 experiment

Gelbard, Fred M.

The CONTAIN code is a system-level analysis tool developed for the USNRC, and is intended for best-estimate prediction of conditions which might occur in the containment building of a nuclear power plant during a severe accident. A key feature of the code is that it models the containment phenomena in an integrated manner. In particular, the CONTAIN code models some of the complex ways that thermal hydraulics and aerosol phenomena interact with each other. The Light Water Reactor Aerosol Containment Experiment (LACE) progarm is a program to aid researchers in their understanding of thermal hydraulic and aerosol behavior within containments. The purpose of this paper is to report on best-estimate LA-4 post-test calculations that have been completed with the most recent version of the CONTAIN code, version 1.11. An analysis of experimental data and review of the blind post-test CONTAIN calculations is used to justify a re-calculation of the experiment and to establish a best-estimate calculation. The best-estimate calculation shows that reasonably good agreement between thermal hydraulic predictions and data can be obtained with the current CONTAIN models by varying experimental parameters within their uncertainties. Furthermore, with the recently added solubility model for hygroscopic aerosols, the best-estimate calculation gives aerosol behavior that is in good agreement with aerosol data. 10 refs., 16 figs.

More Details

Performance and operational characteristics of a Fiber Distributed Data Interface (FDDI) ring

Testi, N.

Sandia National Laboratories is in the process of upgrading the Central Computing Network, which is a large heterogeneous network providing scientific computing, file storage, output services, and remote access to network resources. The migration from the present HYPERchannel-50 technology to HYPERchannel-100 is currently in progress and plans to migrate to the Fiber Distributed Data Interface (FDDI) token ring architecture are being considered. A migration from a variety of proprietary protocols to a primarily TCP/IP environment is also in progress. In order to test the feasibility of the Network Systems Corporation FDDI technology platform, two test rings have been constructed. Ring A' consists of nine dual attached Data Exchange Units (DXUs) and ring B' consists of two dual attached DXUs. The rings are linked together using N715 DXUs. Other DXU models (with associated host computers where applicable) include N130s, an N220, N400s, and FE640 IP routers. Test data on fault isolation and recovery mechanisms, performance, IP routing (within and between rings), and monitor capabilities will be presented. Interoperability' data based on tests between DXUs and Sun FDDI workstations will also be presented. 14 figs.

More Details

Characterization of electron flow in positive-polarity linear-induction accelerators

Rosenthal, Stephen E.

Experiments at Sandia National Laboratories have studied the operation of the linear-induction accelerators, HELIA and Hermes 3, in positive polarity. These experiments have provided a unique opportunity to explore the consequences of multiple-cathode electron emission in magnetically insulated transmission lines. An examination of the total energy-canonical momentum distribution of the electrons explains the features of the magnetically insulated flow exhibited by these systems. Simple analysis based on the basic concept of pressure balance, in conjunction with particle-in-cell numerical simulations, shows how the line voltage is related to the anode and cathode currents. Two flow designations are introduced that can apply to multiple-cathode magnetically insulated transmission lines: full-gap flow (FGF), and locally emitted flow (LEF). 16 refs., 15 figs.

More Details

Design and implementation of a Fiber Distributed Data Interface (FDDI) cable plant and network

Gossage, Steven A.

An extensive optical fiber (o.f.) cable plant has been constructed in the Central Computing Facility (CCF) of Sandia National Labs to support the NSC DX platform with the Fiber Distributed Data Interface (FDDI) network. The cable plant was designed to optimize flexibility, maintainability, expandability, performance, and capacity. More than 2km of fiber cable and over 3400 connectors were installed. Each component of the cable system was carefully evaluated in order to meet the design requirements and conform to standards. A detailed statement of work (SOW) was generated to assure proper implementation of the design by a qualified contractor. Following the installation of the o.f. cable plant, a heterogenous, production network was built to utilize the benefits of the new media and interfaces.

More Details

Geometry and B(1s) core excitons of ortho-carborane

Green, P.F.

The optimized C{sub 2v} geometry of ortho-carborane, 1,2-C{sub 2}B{sub 10}H{sub 12}, is determined from Hartree-Fock calculations. For this geometry, a carbon atom is substituted for a boron atom at one of the 4 inequivalent boron sites and the ground-state unrestricted Hartree-Fock eigenvalues and molecular orbitals are found. One thus obtains the valence structure of the B(1s) core-excited molecule according to the Z + 1 approximation. The eigenvalue of the highest occupied molecular orbital is then subtracted from the experimental B(1s) ionization energy of the same site in ortho-carborane. This determines the excitation energy of the most tightly bound exciton for that site. Three of the sites yield nearly identical excitation energies of 191.9 eV; the fourth site yields an excitation energy of 190.9 eV. 8 refs., 1 fig., 2 tabs.

More Details

Development of the BOLVAPS-LIBORS (Boil-Off Lithium VAPor Source-Laser Ionization Based On Resonance Saturation) lithium ion source for the PBFA-2 (Particle Beam Fusion Accelerator-2) accelerator

Dreike, Philip L.

A large area surface source of Lithium plasma for use as an ion source in the PBFA-2 ion beam diode is described. BOLVAPS produces a 1--2 mm thick layer of Li vapor with a density approaching 1 {times} 10{sup 17} cm{sup {minus}3} by rapid ohmic heating of a thin film laminate, one layer of which contains Li. The principal design issues of the vapor source being built for use on the PBFA-2 accelerator are described. LIBORS uses 670.8 nm laser light to efficiently ionize the Li vapor. The results of small-scale Physics tests and full-scale component development are summarized. 13 refs., 6 figs.

More Details

PBFA 2 applied B ion diode beam characteristics at high voltages

Johnson, David J.

An applied B-field ion diode has been operated at 21 TW on PBFA 2 to study beam generation and transport physics. The radial focusing 15-cm-radius diode utilized a pair of magnet coils in disc cathode structures to produce an axial B-field to minimize electron loss in the 16 mm anode-cathode gaps. The diode was different than used in the past with the cathodes 20% closer together and the B-field increased to 3.3 T at the midplane. The 2.5 MA beam originated from a 5-cm-tall ion emitting region and was transported toward the axis in a 12.5-cm-radius gas cell with 2-{mu}m-thick mylar window and a 5-Torr-argon gas fill. A surface flash-over plasma created by electron loss on wax-filled grooves in the anode produced a beam with comparable currents of proton and carbon ions. The experimental results include the spatial uniformity and time dependence of proton and carbon beam emission from the anode and the divergence and focusability of both beams. 10 refs., 13 figs.

More Details

Anomalous dispersion as a phase-matching technique for second harmonic generation

Cahill, P.A.; Singer, K.D.

Anomalous dispersion (the decrease in refractive index which is associated with absorption) can be used to produce a phase-matched condition for second harmonic generation. This process also gives rise to large increases in the useful second order hyperpolarizability. A new, soluble NLO dye with exceptionally low absorption near 400 nm has been used for anomalous dispersion phase-matching studies in thin films.

More Details

Weldability of nickel and iron aluminides

Maguire, Michael C.

The weldability of alloys based on Ni{sub 3}Al and Fe{sub 3}Al is discussed. Both of these ordered alloy systems may experience problems associated with welding. In the case of Ni{sub 3}Al alloys, limited hot ductility contributes to heat-affected zone cracking. Fe{sub 3}Al alloys experience similar difficulties in zone cracking. Fe{sub 3}Al alloys experience similar difficulties in welding due to excessive grain embrittlement due to the presence of water vapor. Advances in both alloying and substructural refinement to improve the weldability are reviewed. 18 refs., 10 figs.

More Details

Processing of nanocrystalline ceramics

Mayo, M.J.

Methods of preparing non-agglomerated powders for three systems -- yttria, titania, and yttria-stabilized zirconia -- are reviewed. The non-agglomerated nature of these powders should make it possible to sinter them into dense ceramic bodies with nanocrystalline grain sizes. Experiments with yttria-stabilized zirconia have shown that this is indeed the case, with mean linear intercept grain sizes of 60 nm resulting from original powder particle diameters of 13 nm. This ultrafine-grained zirconia is shown, in turn, to have superplastic forming rates 34 times faster than a 0.3 {mu}m-grained commercial zirconia of the same composition. 7 refs., 9 figs.

More Details

A pipelined 650 MHz GaAs 8K ROM with translation logic

Remund, B.

The first commercially available GaAs 8K ROM has been designed and manufactured using GigaBit Logic's 3-level metal E/D process. The worst case clock frequency of 650 MHz has been obtained with a power dissipation of 3.5 W. The ROM is organized as 1K X 8 bits, and on-chip translation logic enables the ROM to have an effective 4K X 8 resolution when used a a sine look-up table. The ECL compatible ROM is packaged in GigaBit Logic's standard 40 pin package.

More Details

A welding metallurgy study of Hastelloy Alloys B-2 and W

Lienert, T.J.; Robino, C.V.; Hills, C.R.; Cieslak, M.J.

The weldability, solidification behavior, and solidification microstructures of Hastelloy{asterisk} Alloy B-2 and Hastelloy{asterisk} Alloy W have been investigated. Susceptibility to fusion zone hot-cracking was determined by autogenous Varestraint testing. High temperature phase transformations, including solidification events, were identified by differential thermal analysis (DTA). After testing, the microstructures of various specimens were examined by optical metallography, scanning electron microscopy (SEM), electron microprobe analysis, and analytical electron microscopy (AEM). Results of this study showed that Hastelloy B-2 has exceptional resistance to hot cracking, comparable to that of Hastelloy C-4 and 304 stainless steel, while Hastelloy W proved to be somewhat more susceptible to hot cracking, exhibiting behavior similar to Alloy 625. The solidification process in both Hastelloy B-2 and Hastelloy W was found to be dominated by the segregation of Mo which gives rise to the formation of terminal eutectic-like constituents. This pattern of segregation is consistent with that of previous work on other Ni--Mo--Cr alloys. The microstructural constituents associated with hot-cracking in each alloy have been identified. 13 refs., 8 figs.

More Details

A weldability study of Haynes Alloy No 242

Maguire, Michael C.

The weldability of Haynes {reg sign} Alloy No. 242 {trademark}, a new alloy derived from the Ni-Mo-Cr system, was investigated. Susceptibility to fusion zone hot cracking was determined by Varestraint testing, and hot ductility was characterized by Gleeble testing. Solidification phase transformation data was recorded with differential thermal analysis (DTA). Weld microstructures were characterized with scanning electron microscopy (SEM), analytical electron microscopy (AEM), and electron probe microanalysis (EPMA). The results of this study indicate that this alloy has better hot cracking resistance than high strength nickel base superalloy 718; however, it has lower resistance than other alloys derived from the Ni-Cr-Mo ternary such as the Hastelloy alloys B2, C-4, C-22, C-276, and W. Segregation patterns in weld microstructures agree well with established information concerning this family of alloys. Prediction of solidification products with the Ni-Mo-Cr phase diagram based on a chemical equivalence was unsuccessful due to the higher carbon content of this alloy which favors the formation of M{sub 6}C. Solidification in Alloy 242 terminates with the formation of two eutectic-like constituents: (1) a M{sub 6}C/austenite eutectic, and (2) a second eutectic with austenite and an undetermined phase. This latter phase has a composition similar to the M{sub 6}C phase, but with a different crystal structure (cubic, ao = 6.6 {Angstrom}). 11 refs., 10 figs., 4 tabs.

More Details

RLA (Recirculating Linear Accelerator) accelerating cavity improvements

Smith, David L.

In the Recirculating Linear Accelerator, we will inject a 10-kA to 20-kA electron beam, and then focus and guide it with an IFR plasma channel, which is created with a low energy electron beam. The REB will be transported through a closed racetrack or a spiral beam line to be re-accelerated by the ringing waveform of dielectric cavities. By adding more accelerating cavities along the beam line, high energies can be achieved. Experiments are in progress to study IFR beam transport issues. A new injector is needed for beam re- acceleration experiments. We are presently installing this new REB injector which will-provide a higher amplitude ({approximately}4 MV), longer duration ({approximately}40-ns FWHM), more rectangularly shaped({approximately}25-ns full width at 90% peak) waveform and a colder beam than were achievable with the previous 1.5-MV injector. The resultant constant beam energy can be more efficiently matched the guiding IFR plasma channel in the beam line and to the turning section magnetic fields. We are now developing new cavities that produce accelerating voltage pulses with improved waveform flatness, width, and amplitudes that do not suffer unacceptable degradation over the first four ringing periods. This effort requires network solver and electrostatic field stress analysis computer codes, and a scaled test model to compare actual waveforms to those predicted by the simulations. 10 refs., 9 figs.

More Details

Hole-trapping/hydrogen transport (HT) sup 2 model for interface-trap buildup in MOS devices

Shaneyfelt, Marty R.

The electric field dependence of radiation-induced interface-trap formation has been reported to be different for metal-gate capacitors and polysilicon-gate capacitors and transistors. For metal-gate capacitors, interface-trap formation steadily increases with increasing positive field. On the other hand, for polysilicon-gate capacitors and transistors, interface-trap buildup peaks near fields of 1 MV/cm to 2 MV/cm and decreases with an approximate E{sup {minus}1/2} dependence at higher fields. The previously reported field dependence for interface-trap generation for Al-gate capacitors is consistent at all fields with McLean's physical explanation of the two-stage process, which depends on hydrogen ion (H {sup +}) release in the bulk of the oxide as radiation-induced holes transport to either interface via polaron hopping. Above 1 MV/cm, the field dependence of interface-trap buildup for polysilicon-gate devices is inconsistent with this model. Instead, it is similar to the field dependence for hole-trapping in SiO{sub 2}, suggesting that hole trapping may play a key role in interface-trap generation in Si-gate devices. However, recent studies of the time-dependence of interface-trap buildup have known that hole trapping cannot be the rate-limiting step in interface-trap buildup in polysilicon gate devices. Consistent with McLean's physical explanation of the two-stage process, the rate-limiting step in interface-trap formation appears to be H{sup +} transport to the Si/SiO{sub 2} interface. We will show that the electric field dependence of radiation-induced oxide- and interface-trap charge buildup for both polysilicon and metal-gate transistors follows an approximate E{sup {minus}1/2} field dependence over a wide range of electric fields when electron-hole recombination effects are included. Based on these results a hole trapping/hydrogen transport (HT){sup 2} model for interface-trap buildup is proposed.

More Details

The EISI (Elemental and Interplanar Spacing Index) index---A search/match tool for electron diffraction phase analysis

Carr, M.J.; Himes, V.L.; Mighell, A.D.; Anderson, R.

The identification of unknown phases in the JCPDS-ICDD Powder Diffraction File (PDF) using diffraction data is a three-step process. First, the Search step rapidly screens the entire PDF to produce a list of candidate solutions that correspond to the unknown phase's d-spacings and chemistry. Second, the Match step examines closely every aspect of each phase in the candidate list, vs the unknown, to make the final identification. Third, the Decision step: Does the solution found make crystal-chemical-thermodynamic sense A hindrance to the identification process for electron diffraction applications is that the PDF consists of x-ray diffraction powder data. The present Elemental and Interplanar Spacing Index (EISI) book is based on the successful 1979 Max-d/Alphabetical Index rules, but with significantly enhanced capability, as it utilizes the combined NIST/Sandia/ICDD Database. The EISI is designed to be used independently as a searching tool. As a searching tool it provides a list of candidate phases for consideration as solutions to the unknown phase diffraction data. The EISI index was designed to assist the actual steps taken by an Analytical Electron Microscope (AEM) diffractionist when confronted with an unknown diffraction dataset: the assemblage and d-spacing searching of a microfile of data containing chemically correct phases. The construction of the NIST/Sandia/ICDD Database overcomes many of the disadvantages associated with searching x-ray derived databases for solutions to electron diffraction problems. 8 refs., 1 fig.

More Details

Information engineering: Sandia's Computer Integrated Manufacturing (CIM) database

Sharp, J.K.

The activities involved in establishing a Computer Integrated Manufacturing (CIM) database at Sandia National Laboratories (SNL) are part of a common effort to implement a proactive data administration function across administrative and technical databases. Data administration activities include the establishment of corporate data dictionary, a corporate information model, and a library of important objects and their relationships with other objects. Processes requiring information will be identified and supported with future information systems that share administrative and technical data. The process to create databases is being established based upon accepted engineering design practices. This paper discusses the CIM database, presents the selected information modeling technique and describes the information engineering process. 9 refs.

More Details

Soft x-ray resist characterization: Studies with a laser plasma x-ray source

Zeigler, J.M.

Little work has been performed to characterize the exposure sensitivity, contrast, and tone of candidate resists for photon energies between 100--300 eV, the range in which projection soft x-ray lithography will be developed. We report here the characterization of near-edge x-ray absorption fine structure (NEXAFS) spectra, exposure sensitivity, contrast, and post-exposure processing of selected polysilane resists at photon energies close to the Si L{sub 2,3} absorption edge (100 eV). We find absorption resonance features in the NEXAFS spectra which we assign to excitation into Si--Si and Si--C {sigma}* orbitals. Using monochromatized XUV exposures on the Si--Si {sigma}* resonance at 105 eV, followed by solvent dissolution development, we have measured the exposure sensitivity curves of these resists. We find sensitivities in the range of 600--3000 mJ/cm{sup 2} and contrasts in the range from 0.5--1.4, depending on the polysilane side chain. We have also performed exposure sensitivity measurements at 92 eV, below the edge. Sensitivity decreases slightly compared to 105 eV exposures and the saturation depth and contrast both increase, as expected. We find also that exposing resist films to oxygen after XUV exposure, but before development increases the sensitivity markedly. 7 figs.

More Details

Simplified Velocity Interferometer System for Any Reflector (VISAR) system

Stanton, P.L.

A simplified, rugged VISAR (Velocity Interferometer System for Any Reflector) system has been developed using a non-removable delay element and an essentially non-adjustable interferometer cavity. In this system, the critical interference adjustments are performed during fabrication of the cavity, freeing the user from this task. Prototype systems are easy to use and give extremely high quality results. 6 refs., 7 figs.

More Details

Development and field testing of the high-temperature borehole televiewer

Duda, L.E.; Uhl, J.E.; Wemple, R.P.

The High-Temperature Borehole Televiewer is a downhole instrument which provides acoustic pictures of the borehole walls that are suitable for casing inspection and fracture detection in geothermal wells. The Geothermal Drilling Organization has funded the development of a commercial tool survivable to temperatures up to 275{degree}C and pressures of 5000 psi. A real-time display on an IBM-compatible PC was included as part of the developmental effort. This paper describes the three principal components are: the mechanical section, the electronics, and the computer software and hardware. Each of these three components are described with special attention to important design changes most pertinent to a high temperature environment. The results of two field tests of the televiewer system are also described. 7 refs., 4 figs.

More Details

Experimental and computational investigation of the fundamental mechanisms of cratering

Thorne, Billy J.

Early attempts at estimation of stress wave damage in blasting by use of finite element analysis met with limited success due to numerical instabilities that prevented calculations from being carried to late times after significant fragmentation had occurred. A new damage model based on microcrack growth in tension allows finite element calculations which remain stable at late times. Estimation of crater profiles for blasting experiments in granite, using laboratory properties for all parameters, demonstrate a high level of success for this damage model. However, estimated crater profiles show systematic differences from excavated crater profiles which motivate further developments of this model. 19 refs., 16 figs.

More Details

Tensile behavior of borated stainless steels

Sorenson, Ken B.

Borated stainless steel tensile testing is being conducted at Sandia National Laboratories (SNL). The goal of the test program is to provide data to support a code case inquiry to the ASME Boiler and Pressure Vessel Code, Section 3. The adoption by ASME facilitates a materials qualification for structural use in transport cask applications. The borated stainless steel being tested conforms to ASTM specification A-887, which specifies 16 grades of material as a function of boron content (0.20% to 2.25%) and fabrication technique. For transport cask basket applications, the potential advantage to using borated stainless steel arises from the fact that the structural and criticality control functions can be combined into one material. The test program at SNL involves procuring material, machining test specimens, and conducting the tensile tests. From test measurements obtained so far, general trends indicate that tensile properties (yield strength and ultimate strength) increase with boron content and are in all cases superior to the minimum required properties established in SA-240, Type 304, a typical grade of austenitic stainless steel. Therefore, in a designed basket, web thickness using borated stainless steel would be comparable to or thinner than an equivalent basket manufactured from a typical stainless steel without boron additions. 3 figs., 5 tabs.

More Details

Thermal expansion of beta-eucryptite filled bismaleimide and glass/bismaleimide composites

Warren, William L.

The use of a negative coefficient of thermal expansion (CTE) mineral filler ({beta}-eucryptite) is examined as a means of reducing CTE of a bismaleimide polymer (Kerimid 601). Results show that {beta}-eucryptite is effective in lowering CTE of the polymer and of glass fabric composites with a filled matrix phase. A theoretical model is presented that effectively predicts CTE of the filled BMI but underestimates the observed results by approximately 15%. The lower predicted CTE is believed to be due to poor interfacial adhesion at the {beta}-eucryptite/bismaleimide interface. Poor interfacial adhesion is supported by ultimate tensile strength results. 27 refs., 7 figs., 3 tabs.

More Details

Quantitative confirmation of diffusion-limited oxidation theories

Gillen, Kenneth T.

Diffusion-limited (heterogeneous) oxidation effects are often important for studies of polymer degradation. Such effects are common in polymers subjected to ionizing radiation at relatively high dose rate. To better understand the underlying oxidation processes and to aid in the planning of accelerated aging studies, it would be desirable to be able to monitor and quantitatively understand these effects. In this paper, we briefly review a theoretical diffusion approach which derives model profiles for oxygen surrounded sheets of material by combining oxygen permeation rates with kinetically based oxygen consumption expressions. The theory leads to a simple governing expression involving the oxygen consumption and permeation rates together with two model parameters {alpha} and {beta}. To test the theory, gamma-initiated oxidation of a sheet of commercially formulated EPDM rubber was performed under conditions which led to diffusion-limited oxidation. Profile shapes from the theoretical treatments are shown to accurately fit experimentally derived oxidation profiles. In addition, direct measurements on the same EPDM material of the oxygen consumption and permeation rates, together with values of {alpha} and {beta} derived from the fitting procedure, allow us to quantitatively confirm for the first time the governing theoretical relationship. 17 refs., 3 figs.

More Details

One-dimensional. sigma. -conjugated polysilylenes, science and technology

Zeigler, J.M.

This paper will focus on the electronic and photochemical properties of polysilylenes, with particular emphasis on the many resemblances in the electronic properties of polysilylenes to those of the familiar {pi}-conjugated polymers. In this context, the term {sigma}-conjugation'' will appear in this paper, as it is almost universally prevalent in the field. However, the use of this term should only be interpreted to suggest a correspondence in the electronic properties with those of {pi}-conjugated materials. No direct correspondence in electronic interactions at the atomic level is implied. In fact, the theoretical underpinnings of the mechanism of electron delocalization in {sigma}-bonded systems remain incomplete, at best. The systematic name polysilylene'' will be used in place of the equivalent and widely used term polysilane.'' In this context, these terms are intended to refer to polydiorganosilylenes, i.e. silicon backbones having substituents other than hydrogen. Moreover, since, with the exception of the commercial use of the intractable polydimethylsilylene as a precursor to {beta}-Sic fibers, the overwhelming majority of the interest in the field is in soluble polysilylenes, the discussion here will be of that greatly predominant group of the materials which are fully tractable and processible. 75 refs., 4 figs., 2 tabs.

More Details

Chlorine reactive-ion-beam etching of InSb and InAs sub 0. 15 Sb sub 0. 85 /InSb strained-layer-superlattices

Vawter, G.A.; Wendt, J.R.

We have demonstrated that CI{sub 2} RIBE is a useful dry-etch technology for InSb and InAsSb/InSb Strained-Layer Superlattices (SLSs) in spite of the low vapor pressure of the In chlorides. Etching of these materials using both Cl{sub 2} Reactive-Ion-Beam Etching (RIBE) and Ar IBE resulted in extremely smooth surfaces and well controlled etch rates with CI{sub 2} RIBE accelerating the etch rate by approximately a factor of two compared to Ar IBE over the range of beam energies studied. Sloped sidewalls resulted at all tested Cl{sub 2} RIBE energies and are probably caused by sidewall passivation with In chlorides. The anisotropy and reduced etch-induced damage of Cl{sub 2} RIBE is expected to become of critical importance in the fabrication of dense arrays of long-wavelength photodetectors. 2 figs.

More Details

Properties of films prepared from low surface area/density alumina-silica

Hietala, Vincent M.

A sol-gel method was use to prepare bulk, closed pore, amorphous alumina-silica. Films prepared from this 47wt% Al{sub 2}O{sub 3}- SiO{sub 2} composition were examined by SAW, elipsometry and electrical measurements. The films were found to have a surface area of 1.1 cm{sup 2}/cm{sup 2}, a refractive index of 1.44 at 633 nm, and a relative permittivity of 6.2 at 200 KHz. These properties indicate potential applications as hermetic seals, barrier coatings, dielectric layers for capacitors and passivation coatings for electronic circuits.

More Details

Rapid thermal processing of high temperature superconducting fiber

Ginley, D.S.

We report on the rapid thermal processing (RTP) of Y-123 fibers with and without presintering to form the orthorhombic phase. We show that fibers which were originally semiconducting and tetragonal before rapid thermal processing form normal twinned orthorhombic material after processing for 2--4 seconds at > 1000{degrees}C with a 3 min. cool down in oxygen. They subsequently show {Tc} to 90K and magnetization indicative of substantial diamagnetic shielding. We present the effects of varying the RTP parameters on the morphology, phase, and superconducting properties of a number of tetragonal and orthorhombic Y-123 fibers. 2 refs., 5 figs., 1 tab.

More Details

A radiation hardened SONOS/CMOS EEPROM family

Murray, James R.

There has long been a need for fast read nonvolatile, rad hard memories for military and space applications. Recent advances in EEPROM technology now allow this need to be met for many applications. Harris/Sandia have developed a 16k and a 256k rad hard EEPROM. The EEPROMs utilize a Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) memory transistor integrated into a 2 {mu}m, rad hard two level metal CMOS process. Both the 16k and the 256k parts have been designed to interface with the Intel 8085 or 80C51 and National 32000 series microprocessors and feature page and block clear modes. Both parts are functionally identical, and are produced by the same fabrication process. They are also pin for pin compatible with each other, except for the extra address and ground pins on the 256k. This paper describes the characteristics of this EEPROM family. 1 ref.

More Details

The greenhouse effect and acid rain

Traeger, R.K.

The concentrations of carbon dioxide, methane, sulfur dioxide, nitrous oxides and chlorofluorocarbons is increasing in the earth's atmosphere. Increased concentrations of these trace gases could lead to global warming, increased acid rain and increased UV radiation on the earth's surface; however, the actual impacts are still uncertain and are also the subject of great debate. Application of clean'' energy sources such as geothermal are obviously desirable for decreasing these effects and improving our overall general environment. This paper briefly summarizes the global environment concerns, providing a backdrop for the following papers which describe the geothermal role in future environmental considerations. 5 refs., 2 figs., 1 tab.

More Details

Triggering GaAs lock-on switches with laser diode arrays

Loubriel, Guillermo M.

Many of the applications that require the unique capabilities of Photoconductive Semiconductor Switches (PCSS) demand a compact package. We have been able to demonstrate that GaAs switches operated in the high gain mode called lock-on'' meet the required electrical switching parameters of several such applications using small switch sizes. The only light source that has enough power to trigger a PCSS and is compatible with a small package is a laser diode. This paper will describe the progress that leads to the triggering of high power PCSS switches with laser diodes. Our goal is to switch up to 5 kA in a single shot mode and up to 100 MW repetitively at up to 10 kHz. These goals are feasible since the switches can be used in parallel or in series. Low light level triggering became possible after the discovery of a high electric field, high gain switching mode in GaAs (and later in InP). At electric fields below 3 kV/cm GaAs switches are activated by creation of, at most, only one conduction electron- valence hole pair per photon absorbed in the sample. This linear mode demands high laser power and, after the light is extinguished, the carriers live for only a few nanoseconds. At higher electric fields GaAs behaves as a light activated Zener diode. The laser light generates carriers as in the linear mode and the field induces gain such that the amount of light required to trigger the switch is reduced by a factor of up to 500. The gain continues until the field across the sample drops to a material dependent lock-on field. At this point the switch will carry as much current as, and for as long as, the circuit can maintain the lock-on field. The gain in the switch allows for the use of laser diodes. 8 refs., 11 figs.

More Details

An experimental study of laminar film condensation with Stefan number greater than unity

Chu, Tze Y.

Experimental laminar condensation heat transfer data is reported for fluids with Stefan number up to 3.5. The fluid is a member of a family of fluorinated fluids developed in the last decade which have been extensively used in the electronics industry for soldering, cooling, and testing applications. Experiments were performed by suddenly immersing cold copper spheres in the saturated vapor of this fluid, and heat transfer rates were calculated using the quasi-steady temperature response of the spheres. In these experiments, the difference between saturation and wall temperature varied from 0.5{degree}C to 190{degree}C. Over this range of temperature difference, the condensate properties vary significantly. For example, viscosity of the condense varies by a factor of over 50. Corrections for the temperature dependent properties of the condensate therefore were incorporated in calculating the Nusselt number based on the average heat transfer coefficient. The results are discussed in light of past experimental data theory for Stefan number less than 1. To the knowledge of the authors, this is the first reported study of condensation heat transfer for Stefan number greater that unity. 24 refs., 7 figs., 2 tabs.

More Details

Development of the force envelope for an acceleration/force extremal controlled vibration test

Smallwood, David O.

A method is presented for determining the force spectral density function for a vibration test where a combination of force and acceleration is used for control. First the acceleration spectral density is established based on an envelope of the interface motion between the test item and the mounting structure (the base) in the use (field) environment. The driving point accelerance (acceleration/force) of the test item is measured at the mounting interface. The force required to drive the test item in an acceleration controlled test is then estimated. A force spectral density is then established using the estimated motion controlled force, and a derived force reduction factor. An extremal control vibration test is then performed based on which parameter (input force or input acceleration) reaches based on which parameter (input force or input acceleration) reaches its envelope first. 7 refs., 7 figs., 2 tabs.

More Details

Comparison of the thermal stability of the codeposited carbon/hydrogen layer to that of the saturated implant layer in graphite

Wampler, William R.

This paper presents the results of an experimental study of the thermal stability in air and vacuum of the codeposited carbon/hydrogen layer formed in a carbon-lined fusion reactor. Results are also presented for the stability of the saturated layer formed by the implantation of energetic hydrogen ions into a graphite surface. For both films, the hydrogen isotope release occurs at a much lower temperature in air than it does in a vacuum. At temperatures above 600 K, the hydrogen isotope release in air is very rapid and is emitted in a condensible form. It is speculated that isotopic exchange with the water present in air is responsible for this release. In vacuum, temperatures in excess of 1000 K are required to produce a rapid release from either film. The implications of these results to the safety of tritium in carbon-lined fusion reactors are discussed. 24 refs., 2 figs.

More Details

Laboratory determination of effective stress laws for deformation and permeability of chalk

Teufel, L.W.

Laboratory deformation and permeability measurements have been made on chalk samples from Ekofisk area fields as a function of confining stress and pore pressure to determine the effective stress laws for chalk. An understanding of the effective stress law is essential to obtain correct reservoir-property data from core analysis and is critical for reservoir management studies and reservoir compaction models. A powerful statistical technique known as the response surface method has been used to analyze our laboratory data determine the form of the effective stress law for deformation and permeability. Experiments were conducted on chalk samples that had a range of porosities from 15% to 36%, because porosity is the dominant intrinsic property that effects deformation and permeability behavior of chalk. Deformation of a 36% porosity chalk was highly nonlinear, but the effective stress law was linear, with {alpha} equal to about unity. Lower-porosity samples showed linear strain behavior and a linear effective stress law with {alpha} as low as 0.74. Analysis of the effective stress law for permeability is presented only for the lowest porosity chalk sample because changes in permeability in the higher-porosity chalk samples due to increasing confining stress or pore pressure were not were large enough, to deduce meaningful effective stress relationships. 15 refs., 8 figs., 2 tabs.

More Details

Predicting switched-bias response from steady-state irradiations

Fleetwood, Daniel M.

In actual circuit application, MOS transistor bias is generally not constant through radiation exposure. Nevertheless, the overwhelming majority of radiation effects studies and hardness assurance testing is performed at constant bias for simplicity and practicality. In the past 15 years, however, it has been shown that oxide- and interface-trap charge buildup and annealing during switched-bias exposures can differ quantitatively and qualitatively from that observed during steady-state exposures. This has made it difficult to develop predictive models of MOS circuit response for actual use conditions, and has introduced uncertainty into hardness assurance testing of MOS circuits. In this summary, defect growth and annealing rates are compared for steady-state and switched-biased irradiations of MOS transistors. A simple method is described to predict MOS oxide-trap charge, interface-trap charge, and mobility degradation during switched-bias exposures from steady-state ( on'' and off'') irradiations. Over a wide range of switching conditions for the devices examined, this method has provided predictions typically accurate to within better than 20%. The maximum error observed to data is less than 40%. This method should allow the total-dose radiation response of MOS circuits in real-use scenarios to be modeled with improved accuracy and flexibility. 9 refs., 3 figs.

More Details

Basic data report for drillhole H-16 (Waste Isolation Pilot Plant-WIPP)

Mercer, J.W.; Snyder, R.P.

Drillhole H-16 is an exploratory test hole, 850.9 ft deep, drilled in eastern Eddy County, New Mexico, to study the hydrologic parameters of possible aquifers and how these aquifers could affect the construction and maintenance of a shaft to be located about 54 ft from the drillhole. This shaft will connect the underground working of the WIPP (Waste Isolation Pilot Plant) site to the surface. Oeophysical logs were taken to measure acoustic velocities, density, radioactivity, porosity, and formation resistivities. This report describes the data collected during the drilling of exploration drillhole H-16. 2 refs., 2 figs., 3 tabs.

More Details

Applying the resources of a national laboratory to support US competitiveness: A focus on cooperative R & D agreements

Arvizu, D.E.

Recent legislation mandated the improvement of national competitiveness as a mission of the defense programs of the US Department of Energy. As a consequence, technology transfer --- the process of transferring commercially valuable technologies developed under government sponsorship to industry for commercialization --- is becoming an important emphasis at many DOE laboratories. Technology transfer processes take many forms, and there are different perspectives on how to approach this activity. In this paper, a taxonomy of technology transfer processes at a national laboratory is presented. In addition, the focus and rationale of Sandia National Laboratories' unique new initiative called the Technology Maturation Program is discussed. This program is designed to complete one essential element of technology transfer that advanced technologies toward commercial applications to the point that industry is willing to assume the investment risk. Strategies and program plans designed to improve the effectiveness of Sandia's contribution to enhancing US industry's competitive position in world markets are also presented.

More Details

Effect of ENDF/B-VI cross sections on neutron dosimetry

Griffin, Patrick J.

ENDF/B-VI cross sections were released to the testing community in January 1990. Work at Sandia National Laboratories, with pre-released versions of the new cross sections indicates that changes in the neutron-induced charged-particle reactions will significantly affect 14-MeV neutron dosimetry. Reactions that are important for fission reactor dosimetry were examined and most did not change significantly. 12 refs., 3 figs., 3 tabs.

More Details

Characterization of chemically prepared PZT thin films

Tuttle, Bruce

We have systematically varied processing parameters to fabricate PZT 53/47 thin films. Polycrystalline PZT thin films were fabricated by spin depositing Pt coated SiO{sub 2}/Si substrates with alkoxide solutions. Our study focused on two process parameters: (1) heating rate and (2) excess Pb additions. We used rapid thermal processing techniques to vary heating rates from 3{degree}C/min to 8400{degree}C/min. Films were characterized with the following excess Pb additions: 0, 3, 5, and 10 mol %. For all process variations, films with greater perovskite content had better ferroelectric properties. Our best films were fabricated using the following process parameters: an excess Pb addition of 5 mol %, a heating rate of 8400{degree}C/min and annealing conditions of 700{degree}C for 1 min. Films fabricated using these process conditions had a remanent polarization of 0.27 C/m{sup 2} and a coercive field of 3.4 MV/m. 12 refs., 4 figs.

More Details

Lost circulation technology development projects

Glovka, D.A.

Lost circulation is the phenomenon where circulating drilling fluid is lost to fractures or pores in the rock formation rather than returning to the surface through the wellbore annulus. In geothermal drilling, lost circulation can be a serious problem that contributes greatly to the cost of the average geothermal well. A DOE-sponsored program is underway at Sandia National Laboratories to develop new technology for solving lost circulation problems. The Lost Circulation Technology Development Program currently consists of twelve projects in three areas: technology to plug porous and minor-fracture loss zones; technology to plug major-fracture loss zones; and technology to characterize loss zones. This paper describes the program and highlights recent progress. 12 refs., 10 figs.

More Details
Results 98601–98700 of 99,299
Results 98601–98700 of 99,299