Publications

Results 95401–95500 of 96,771

Search results

Jump to search filters

Utility Battery Exploratory Technology Development Program report for FY91

Magnani, N.J.

Sandia National Laboratories, Albuquerque, manages the Utility Battery Exploratory Technology Development Program, which is sponsored by the US Department of Energy`s Office of Energy Management. In this capacity, Sandia is responsible for the engineering analyses and development of rechargeable batteries for utility-energy-storage applications. This report details the technical achievements realized during fiscal year 1991. Sodium/Sulfur, Zinc/Bromine, Nickel/Hydrogen, Aluminium/Air and Lead/Acid batteries are evaluated.

More Details

Interpretations of single-well hydraulic tests of the Rustler Formation conducted in the vicinity of the Waste Isolation Pilot Plant site, 1988--1989

Beauheim, Richard L.

This report presents the results of single-well hydraulic tests performed in seven wells in the vicinity of the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico in 1988 and 1989. The tests discussed in this report were performed in four of the five members of the Rustler Formation. The tests include: a slug-withdrawal test of the unnamed lower member of the Rustler ate well H-16; slug-withdrawal and slug-injection tests of the Culebra Dolomite Member at well AEC-7; slug-injection tests of the Culebra at well D-268; a pumping test of the Culebra at well H-18; pulse-injection, slug-injection, and slug-withdrawal tests of Magenta Dolomite Member at well H-2b1; pulse-withdrawal, slug-withdrawal, and slug-injection tests of the Magenta at well H-3b1; and pulse-withdrawal and slug-withdrawal tests of the Forty-niner Member at well H-3d. The tests were intended to provide data on the transmissivities of the Rustler members for use in regional-scale modeling of groundwater flow through the Rustler.

More Details

Environment, safety and health training catalog. Investing in our future

Ehart, Linda L.

The ES&H Training Catalog is a tool to assist managers in determining which training courses they require their employees to complete. The narrative description under ``Who Shall Attend`` describes the characteristics of the employees and contractors under the direction of Sandia who are required by law, regulation, DOE Order, or SNL Directive to complete the training in order to be in compliance. The narrative is ``Who Should Attend`` describes the individuals for which the course is `highly recommended,`` although they are not mandated to attend.

More Details

SANET 1.0 User`s Guide and Reference Manual

Camp, Allen L.

SANET is a computer program intended for use in constructing, evaluating, and printing event trees for safety and reliability studies. SANET allows the user to graphically construct event trees, assign probabilities to the branches on the tree and include a variety of labels. Fast, publication quality printed output can be obtained. SANET requires an IBM compatible PC with a 80286, 80386 or 80486 processor, VGA graphics, a mouse and an HP Laserjet printer.

More Details

Innovation, the economy, and the federal laboratories: Principles and issues of the innovation process

Debriun, J.P.; Corey, J.D.

The technological innovation process comprises a range of stages, steps, and activities extending fro generation of new ideas through successful practical application of those ideas. This process constitutes the larger context within which technology transfer programs must necessarily operate if the goal is to transform new knowledge and technology into products which are competitive in the emerging global marketplace. A basic grasp of the principles and issues involved in the total innovation process is essential for developing and improving programs, prioritizing activities, and making strategic and operational decisions which will be appropriate and effective. This report attempts to provide a relatively brief overview of the total innovation process and related issues. This focus follows from the intent of the federal technology transfer initiative, which is essentially to facilitate the rapid advance of technological progress and to enhance national economic competitiveness. It is important to recognize that the transfer of technology between organizations or individuals is only one part of the complete process, although possibly a critical part in some situations. From an economic standpoint, technology transfer without resulting successful commercialization is meaningless. This report should be useful primer for people from any sector of the economy, even though it is intended to address the context for the transfer of federal laboratory technology in particular.

More Details

Interaction of tin telluride and cesium hydroxide with reactor materials in steam

Elrick, R.M.; Ouellette, A.L.

Two laboratory tests were designed to study the behavior of SnTe and CsOH in steam at {approximately}1230 K with the reactor materials Inconel 600, 304 stainless steel, silver and nickel, a nonoxidizing constituent of Inconels and steels in reactor accident environments. Thermochemical calculations examined the sensitivity of species in the H-O-Cs-Te-Sn system to temperature, to hydrogen and SnTe concentrations and to total system pressure. Test results indicate that should SnTe be formed from fission product tellurium and the tin in zircaloy cladding, it may not remain stable in steam in the presence of unoxidized (or lightly oxidized) metals. Calculations show a small amount of SnTe, in equilibrium with steam, decomposes to primarily Te and SnO. It is felt that these decomposition producets react with the reactor materials since Sn and Te are seen to be deposited separately and not as SnTe. The deposition velocity for SnO vapor in the system was estimated to be 0.57 m/s. The response of CsOH in the system was similar to behavior observed previously: some cesium combined with silicon found in Inconel and stainless steel oxides. At lower temperatures ({le}940 K) CsOH corroded Inconel, stainless steel and nickel providing enhanced surface area for additional trapping of species. There was no experimental evidence for the formation of cesium telluride; vapor equilibrium calculations did not predict formation either. 33 refs., 29 figs, 7 tabs.

More Details

Multiple scattering background in heavy ion backscattering spectrometry

Brice, D.K.

An analytical expression and an integral representation are presented for the contribution, Y{sup (n)} = {Sigma}{sup (n)}{delta}{Omega}{sub n}, of n-event multiple scattering chains to the observed backscattering spectrum in heavy-ion backscattering (HIBS) measurements. The approximations introduced in deriving the results are chosen such that an upper limit is placed on Y{sup (n)} by the expressions. The Rutherford elastic scattering cross section is used to describe individual collisions between incident projectiles and target atoms. Screening of the Rutherford scattering cross section is included in an approximate fashion which maintains the upper limit estimate. Inelastic energy loss between collision events is assumed proportional to the projectile velocity. Specific application of theses expressions is made to HIBS detection of trace amounts of heavy atom impurities on a Si by 200--400 keV C{sup +} beams. The predicted multiple scattering background for this applications is compared with the predicted single scattering signal for 10{sup 10} atoms/cm{sup 2} of Fe, Cu, Zr, Sn, or Au, as surface impurity. The comparison shows that the multiple scattering background poses no barrier to extending the sensitivity of HIBS detection of impurities in this mass range to levels as low as 10{sup 8} atoms/cm{sup 2} for the upper part of the energy range considered. Comparison of calculations with and without screening included show that the screening of the Rutherford cross section by atomic electrons is a significant factor in preventing multiple scattering effects from interfering with HIBS spectrometry at impurity levels in the 10{sup 10} atoms/cm{sup 2} range.

More Details

MELCOR 1.8.1 assessment: FLECHT SEASET natural circulation experiments

Kmetyk, Lubomyra N.

The MELCOR code has been used to simulate the FLECHT SEASET natural circulation experiments done in a scale-model Westinghouse-PWR test facility, with code results compared to experimental data. Sensitivity studies have been done, for both single-phase and two-phase natural circulation conditions, on time step effects and machine dependencies; nodalization studies and studies on several code modelling options were also done. Good agreement is found between prediction and observation for steady-state, single-phase liquid natural circulation. The code could reproduce the major thermal/hydraulic response characteristics in two-phase natural circulation, but only through a number of nonstandard input modelling modifications; MELCOR cannot reproduce the requisite physical phenomena with ``normal`` input models. Because the same response is observed in similar tests at other facilities over a range of scales and is expected to occur in full-scale plants as well, the ability of the user to ``match`` the observed behavior through a small set of nonstandard input modelling changes allows MELCOR to be used in PRA studies in which such physics are expected to be encountered, while awaiting corrections to the code models involved. The time step control algorithm in MELCOR does not run this problem efficiently; a substantial reduction in time step results in significantly less oscillation predicted at only a small increase run time.

More Details

Background information presented to the expert panel on inadvertent human intrusion into the Waste Isolation Pilot Plant

Weart, Wendell D.

The Waste Isolation Pilot Plant (WIPP) is planned as a mined geologic repository for the disposal of transuranic (TRU) radioactive wastes generated by defense programs of the United States Department of Energy. One of the criteria for evaluating the suitability of the WIPP for disposal of TRU wastes is compliance with the United States Environmental Protection Agency`s (EPA) standards for such facilities. The Containment Requirements of those standards require calculating cumulative releases of radionuclides to the accessible environment by all combinations of events and processes (scenarios) that may affect the escape and transport of radionuclides from the repository for 10, 000 years after decommissioning of the facility. Because the release limits established by the EPA are probabilistic, scenario probabilities are also required. A panel of experts was convened to estimate the probabilities of occurrence of the events used in scenario development and to identify additional human-intrusion events for inclusion in a safety assessment of the WIPP. This report documents the background presentations that were made to the panel about the WIPP program, regulatory guidelines, and performance-assessment program, and site-specific and regional geologic and hydrologic characteristics that may affect the WIPP disposal system.

More Details

Strategic Petroleum Reserve (SPR) additional geologic site characterization studies, West Hackberry salt dome, Louisiana

Neal, J.T.

This report is a revision and update of the original geologic site characterization report that was published in 1980. Many of the topics addressed in the earlier report were predictive in nature and it is now possible to reexamine them some 12 years later, using the data from 17 new caverns and more than ten years of SPR storage experience. Revised maps of the salt configuration show on overhand and faults on the north side of the dome, defining more clearly the edge relationships with respect to the SPR caverns. Caprock faults may locally influence the pattern of subsidence, which is occurring primarily as a result of cavern creep closure. The greater subsidence rate occurring at West Hackberry will likely require mitigative action within a few years. Seismicity of low intensity recurs infrequently at West Hackberry, but a small earthquake in 1983 caused dish rattling in the immediate vicinity.

More Details

The hydrothermal stability of cement sealing materials in the potential Yucca Mountain high level nuclear waste repository

Krumhansl, James L.

Cementitious materials, together with other materials, are being considered to seal a potential repository at Yucca Mountain. A concern with cementitious materials is the chemical and mineralogic changes that may occur as these materials age while in contact with local ground waters. A combined theoretical and experimental approach was taken to determine the ability to theoretically predict mineralogic changes. The cementitious material selected for study has a relatively low Ca:Si ratio approaching that of the mineral tobermorite. Samples were treated hydrothermally at 200{degrees}C with water similar to that obtained from the J-13 well on the Nevada Test Site. Post-test solutions were analyzed for pH as well as dissolved K, Na, Ca, Al, and Si. Solid phases formed during these experiments were characterized by scanning electron microscopy and X- ray diffraction. These findings were compared with predictions made by the geochemical modeling code EQ3NR/E06. It was generally found that there was good agreement between predicted and experimental results.

More Details

Massively Parallel Computing at Sandia and its Application to National Defense

Dosanjh, Sudip S.

Two years ago, researchers at Sandia National Laboratories showed that a massively parallel computer with 1024 processors could solve scientific problems more than 1000 times faster than a single processor. Since then, interest in massively parallel processing has increased dramatically. This review paper discusses some of the applications of this emerging technology to important problems at Sandia. Particular attention is given here to the impact of massively parallel systems on applications related to national defense. New concepts in heterogenous programming and load balancing for MIMD computers are drastically increasing synthetic aperture radar (SAR) and SDI modeling capabilities. Also, researchers are showing that the current generation of massively parallel MIMD and SIMD computers are highly competitive with a CRAY on hydrodynamic and structural mechanics codes that are optimized for vector processors.

More Details

Design and testing of space-domain minimum average correlation energy (SMACE) filters for 2-D acousto-optic correlators

Proceedings of SPIE - The International Society for Optical Engineering

Stalker, K.T.

Two-dimensional Acousto-Optic (AO) correlators differ from the frequency plane correlators in that multiplying, shifting, and adding, rather than Fourier transforming are used to obtain the correlations. Thus, many of the available composite filter design techniques are not aimed at designing filters for use in AO correlators since they yield frequency-domain functions. In this paper, a method is introduced for designing filter impulse responses of arbitrary extent for implementation on AO correlators. These filters are designed to yield sharp correlation peaks. Simulation results are included to illustrate the viability of the proposed approach. Also included are some initial results from the first successful use of grey-scale composite filters on an AO correlator.

More Details

Design and testing of 3-Level optimal correlation Filters

Proceedings of SPIE - The International Society for Optical Engineering

Stalker, K.T.

Previously, we have (lesigueci 3-level filters (suitable for implementation on magneto-optic spatial light modulators) to maxiiiiize the output signal-to-noise ratio (SNR) and to separately maximize Peak-to-Correlation Energy (PCE) that iieasures the correlation peak sharpness. In practice, we want the correlation peaks to he sharp (i.e., large PCE) as well as noise-tolerant (i.e., large SNR). In this paper, we vill present a new method to optimally coiiibine these two desirable properties into a single optimization procedure. Similar methods to trade off SNR versus Peak Efficiency and PCE versus Peak Efficiency will be presented. Both siiiiulation and experinental results will be included.

More Details

Combining scenarios in a calculation of the overall probability distribution of cumulative releases of radioactivity from the Waste Isolation Pilot Plant, southeastern New Mexico

Tierney, M.S.

The Waste Isolation Pilot Plant (WIPP), in southeastern New Mexico, is a research and development facility to demonstrate safe disposal of defense-generated transuranic waste. The US Department of Energy will designate WIPP as a disposal facility if it meets the US Environmental Protection Agency's standard for disposal of such waste; the standard includes a requirement that estimates of cumulative releases of radioactivity to the accessible environment be incorporated in an overall probability distribution. The WIPP Project has chosen an approach to calculation of an overall probability distribution that employs the concept of scenarios for release and transport of radioactivity to the accessible environment. This report reviews the use of Monte Carlo methods in the calculation of an overall probability distribution and presents a logical and mathematical foundation for use of the scenario concept in such calculations. The report also draws preliminary conclusions regarding the shape of the probability distribution for the WIPP system; preliminary conclusions are based on the possible occurrence of three events and the presence of one feature: namely, the events attempted boreholes over rooms and drifts,'' mining alters ground-water regime,'' water-withdrawal wells provide alternate pathways,'' and the feature brine pocket below room or drift.'' Calculation of the WIPP systems's overall probability distributions for only five of sixteen possible scenario classes that can be obtained by combining the four postulated events or features.

More Details

Voltage delay in Li/SOCl2 cells for artillery applications at -35°C

Proceedings of the International Power Sources Symposium

Delnick, F.M.; Baldwin, A.R.

Two active Li/SOCl2 cells for use in artillery-fired atomic projectiles are being developed. Voltage delay is the primary mode of electrochemical failure in these cells at -35°C. To minimize this anode polarization, the anode passivation is inhibited by adding chloromethyl chlorosulfate (CMCS) to the sulfur dioxide complex of lithium tetrachloroaluminate (LiAlCl4-SO2) in the cell electrolyte. One battery powers the telemetry system (TM battery) and the other powers a projectile event timer circuit (PET battery). The authors utilize the PET battery and PET load profile to demonstrate the effect of electrolyte additives on anode passive film growth and associated voltage delay. Similar effects were also observed in the TM battery. A limited number of PET prototypes was available for this study. Therefore, several tests were performed in hermetically sealed prismatic laboratory test cells which were constructed using the same electrochemical components which are used in the PET cells.

More Details

An investigation of gouge initiation in high-velocity sliding contact

Tachau, R.D.M.

Surface damage has been observed on the rails of rocket sled tracks and on the barrels of high-velocity guns. The phenomenon is generally referred to as ``ongoing``. Damage to a stationary surface (guider) is created from the oblique impact of a high-velocity object (slider) moving over its surface. The surface damage (gouge) is typically a shallow crater in the shape of a teardrop with the leading edge characterized by the wider end and a slightly raised lip. For rocket sleds, rail gouging occurs when the sled velocity is greater than 1.5 km/sec; while in guns, barrel gouging occurs when the velocity exceeds 4 km/sec. A model is developed to describe the phenomenon of gouging. An unbalanced slider randomly causes a shallow-angle, oblique impact between the slider and the guider. At sufficiently high velocity, the impact produces a thin, but very hot, layer of soft material at the contact surface. Under the action of a moving load, the soft layer lends itself to an antisymmetric deformation and a gouge is formed when this soft material is over-run by the slider. The model is simulated numerically with a hydrodynamic (CTH) code. The results of the simulations are in good agreement with the observed phenomena. Based on the simulated temperature and pressure profiles at the contact surface, design criteria for gouge mitigation are developed in this study. 45 refs., 29 figs., 1 tab.

More Details

Description of critical instrumentation systems Sandia National Laboratories/Defense Nuclear Agency Remote Area Monitoring System

Metcalf, J.H.

A description of the Remote Area Monitoring System utilized on nuclear tests conducted by Sandia National Laboratories and the Defense Nuclear Agency is presented. The configuration of the detectors as used on a test is described, as well as the system hardware. Calibration of the detectors before fielding is also discussed.

More Details

Fission product release and fuel behavior of irradiated light water reactor fuel under severe accident conditions. The ACRR ST-1 Experiment

Allen, Mark S.

The annular Core Research Reactor (ACRR) Source Term (ST) Experiment program was designed to obtain time-resolved data on the release of fission products from irradiated fuels under well-controlled light water reactor severe accident conditions. The ST-1 Experiment was the first of two experiments designed to investigate fission product release. ST-1 was conducted in a highly reducing environment at a system pressure of approximately 0.19 MPa, and at maximum fuel temperatures of about 2490 K. The data will be used for the development and validation of mechanistic fission product release computer codes such as VICTORIA.

More Details

Waste-generated gas at the Waste Isolation Pilot Plant: Papers presented at the Nuclear Energy Agency Workshop on gas generation and release from radioactive waste repositories

Davies, Peter B.

There are four papers contained in this report which were presented at the Nuclear Energy Agency (NEA) Gas Workshop to provide information about studies of waste-generated gas being conducted for the Waste Isolation Pilot Plant (WIPP). The paper by Davies et al. provides a general overview of the physical conditions pertinent to waste-generated gas and of the coupling of chemical, hydrologic, and structural processes. The paper by Brush et al. describes specific gas-generation processes and the laboratory- and bin-scale experiments being carried out to characterize these processes. The paper by Mendenhall et al. describes coupled modeling of gas generation and room closure, and provides an analysis of the potential for fracture generation and growth. the paper by Webb describes a series of sensitivity calculations carried out to assess the importance of hydrologic parameters, such as formation permeability and two-phase characteristic curves. Together, these papers provide an overview of the present (September 1991) status of waste-generated gas studies for the WIPP.

More Details

Pretest 3D finite element analysis of the WIPP Intermediate Scale Borehole Test

Arguello, J.G.

A three dimensional pretest finite element analysis of the Intermediate Scale Borehole Test has been performed. In the analysis, the 7.7 years simulation period includes the mining of Rooms C1 and C2, and the N1420 cross drift, at time zero; drilling of the borehole between the two rooms at 5.7 years; and 2 years of post-drilling response. An all salt configuration was used in the calculation. The 1984 Waste Isolation Pilot Plant (WIPP) reference elastic-secondary creep law, with reduced elastic moduli, was used to model the creeping response of the salt. Results show that after mining of the rooms and cross drift a relatively high von Mises stress state exists around the perimeter of the pillar. However, by 5.7 years, or immediately prior to drilling of the borehole, the pillar has relaxed to an almost uniform von Mises stress of about 7--8 MPa. After the borehole is drilled, a relatively high von Mises stress field is once again set up in the immediate vicinity of the hole. This drives the creep closure of the borehole. The hole closes more in the vertical direction than in the horizontal direction, resulting in ovalling of the hole. At the end of the simulation, the von Mises stress around the borehole is still higher than that in the remained of the pillar. Thus, the closure rates are relatively high at the end of the simulation time.

More Details

A simplified radionuclide source term for total-system performance assessment; Yucca Mountain Site Characterization Project

Wilson, Michael L.

A parametric model for releases of radionuclides from spent-nuclear-fuel containers in a waste repository is presented. The model is appropriate for use in preliminary total-system performance assessments of the potential repository site at Yucca Mountain, Nevada; for this reason it is simpler than the models used for detailed studies of waste-package performance. Terms are included for releases from the spent fuel pellets, from the pellet/cladding gap and the grain boundaries within the fuel pellets, from the cladding of the fuel rods, and from the radioactive fuel-assembly parts. Multiple barriers are considered, including the waste container, the fuel-rod cladding, the thermal ``dry-out``, and the waste form itself. The basic formulas for release from a single fuel rod or container are extended to formulas for expected releases for the whole repository by using analytic expressions for probability distributions of some important parameters. 39 refs., 4 figs., 4 tabs.

More Details

Areal power density: A preliminary examination of underground heat transfer in a potential Yucca Mountain repository and recommendations for thermal design approaches; Yucca Mountain Site Characterization Project

Hertel, Eugene S.

The design of the potential Yucca Mountain repository is subject to many thermal goals related to the compliance of the site with federal regulations. This report summarizes a series of sensitivity studies that determined the expected temperatures near the potential repository. These sensitivity studies were used to establish an efficient loading scheme for the spent fuel canisters and a maximum areal power density based strictly on thermal goals. Given the current knowledge of the site, a design-basis areal power density of 80 kW/acre can be justified based on thermal goals only. Further analyses to investigate the impacts of this design-basis APD on mechanical and operational aspects of the potential repository must be undertaken before a final decision is made.

More Details

A summary of high-temperature electronics research and development

Thome, F.V.; King, D.B.

Current and future needs in automative, aircraft, space, military, and well logging industries require operation of electronics at higher temperatures than today's accepted limit of 395 K. Without the availability of high-temperature electronics, many systems must operate under derated conditions or must accept severe mass penalties required by coolant systems to maintain electronic temperatures below critical levels. This paper presents ongoing research and development in the electronics community to bring high-temperature electronics to commercial realization. Much of this work was recently reviewed at the First International High-Temperature Electronics Conference held 16--20 June 1991 in Albuquerque, New Mexico. 4 refs., 1 tab.

More Details

PHYSLIB: A C++ tensor class library

Budge, Kent G.

C++ is the first object-oriented programming language which produces sufficiently efficient code for consideration in computation-intensive physics and engineering applications. In addition, the increasing availability of massively parallel architectures requires novel programming techniques which may prove to be relatively easy to implement in C++. For these reasons, Division 1541 at Sandia National Laboratories is devoting considerable resources to the development of C++ libraries. This document describes the first of these libraries to be released, PHYSLIB, which defines classes representing Cartesian vectors and (second-order) tensors. This library consists of the header file physlib.h, the inline code file physlib.inl, and the source file physlib.C. The library is applicable to both three-dimensional and two-dimensional problems; the user selects the 2-D version of the library by defining the symbol TWO D in the header file physlib.h and recompiling physlib.C and his own code. Alternately, system managers may wish to provide duplicate header and object modules of each dimensionality. This code was produced under the auspices of Sandia National Laboratories, a federally-funded research center administered for the United States Department of Energy on a non-profit basis by AT T. This code is available to US citizens, and institutions under research, government use and/or commercial license agreements.

More Details

A user's guide to CEPXS/ONELD Version 1. 1

Lorence Jr., L.J.

This is the user's guide to CEPXS/ONELD Version 1.1, a code package for coupled electron-photon transport in one-dimensional slab geometry. The code package consists of the multigroup cross-section generating code, CEPXS; the preprocessor code, PRE1D; the discrete ordinates code, ONELD; and the postprocessor code, POST1D. In Version 1.1, new features have been implemented through several new keywords. Since Version 1.0 keywords are still applicable, this document should be considered as an addendum to the Version 1.0 User's Guide. 5 refs.

More Details

Preliminary evaluation of hermetic JT/LJT/R P connector socket contact design

Baca, J.R.F.

This report presents a precursory examination of a number of issues pertaining to socket contacts in hermetic connectors. The principal issues addressed are high-contact resistance and contact chatter (circuit discontinuities). Efforts examining the characteristics of the existing socket contact design, the possibility of connector/contact rework, quick-fix solutions, and contact redesigns are summarized.

More Details

A Simple Model for the Motion of Pulsed-Laser-Driven Thin Flyers

Journal de Physique. 4

Lawrence, R.J.

A model that predicts the final velocity of high-power, pulsed-laser-driven thin flyers is described. The required input parameters can either be obtained from standard handbooks or simply extracted from one set of data. The model yields a number of features and scaling laws that are well verified by experiment. Specific comparisons of model predictions with experimental results illustrate excellent agreement for variations of laser fluence and pulse width as well as flyer diameter and thickness.

More Details

Experiments to investigate the effect of flight path on direct containment heating (DCH) in the Surtsey test facility

Allen, Mark S.

The goal of the Limited Flight Path (LFP) test series was to investigate the effect of reactor subcompartment flight path length on direct containment heating (DCH). The test series consisted of eight experiments with nominal flight paths of 1, 2, or 8 m. A thermitically generated mixture of iron, chromium, and alumina simulated the corium melt of a severe reactor accident. After thermite ignition, superheated steam forcibly ejected the molten debris into a 1:10 linear scale the model of a dry reactor cavity. The blowdown steam entrained the molten debris and dispersed it into the Surtsey vessel. The vessel pressure, gas temperature, debris temperature, hydrogen produced by steam/metal reactions, debris velocity, mass dispersed into the Surtsey vessel, and debris particle size were measured for each experiment. The measured peak pressure for each experiment was normalized by the total amount of energy introduced into the Surtsey vessel; the normalized pressures increased with lengthened flight path. The debris temperature at the cavity exit was about 2320 K. Gas grab samples indicated that steam in the cavity reacted rapidly to form hydrogen, so the driving gas was a mixture of steam and hydrogen. These experiments indicate that debris may be trapped in reactor subcompartments and thus will not efficiently transfer heat to gas in the upper dome of a containment building. The effect of deentrainment by reactor subcompartments may significantly reduce the peak containment load in a severe reactor accident. 8 refs., 49 figs., 6 tabs.

More Details

Characteristics, finite element analysis, test description, and preliminary test results of the STM4-120 kinematic Stirling engine

Linker, Kevin L.

The Department of Energy's Solar Thermal Program has as one of its program elements the development and evaluation of conversion device technologies applicable to dish-electric systems. The primary research and development combines a conversion device (heat engine), solar receiver, and generator mounted at the focus of a parabolic dish concentrator. The Stirling-cycle heat engine was identified as the conversion device for dish-electric with the most potential for meeting the program's goals for efficiency, reliability, and installed cost. To advance the technology toward commercialization, Sandia National Laboratories has acquired a Stirling Thermal Motors, Inc., kinematic Stirling engine, STM4-120, for evaluation. The engine is being bench-tested at Sandia's Engine Test Facility and will be combined later with a solar receiver for on-sun evaluation. This report presents the engine characteristics, finite element analyses of critical engine components, test system layout, instrumentation, and preliminary performance results from the bench test.

More Details

Interior intrusion detection systems

Rodriguez, Jose R.

The purpose of this NUREG is to present technical information that should be useful to NRC licensees in designing interior intrusion detection systems. Interior intrusion sensors are discussed according to their primary application: boundary-penetration detection, volumetric detection, and point protection. Information necessary for implementation of an effective interior intrusion detection system is presented, including principles of operation, performance characteristics and guidelines for design, procurement, installation, testing, and maintenance. A glossary of sensor data terms is included. 36 figs., 6 tabs.

More Details

JT/LJT connector insert material evaluation

Baca, J.R.F.

Different insert (insulator) materials are undergoing evaluation to replace the Fiberite E-3938 BE96 material currently used. Also being evaluated is the reconfiguration of the insert and metal shell-edge geometries for the purpose of reducing the alleged interference principally responsible for insert damage.

More Details

Radiation embrittlement of the neutron shield tank from the Shippingport reactor

Rosinski, S.T.

The irradiation embrittlement of neutron shield tank (NST) material (A212 Grade B steel) from the Shippingport reactor has been characterized. Irradiation increases the Charpy transition temperature (CTT) by 23--28{degrees}C (41--50{degrees}F) and decreases the upper-shelf energy. The shift in CTT is not as severe as that observed in high-flux isotope reactor (HFIR) surveillance specimens. However, the actual value of the CTT is higher than that for the HFIR data. The increase in yield stress is 51 MPa (7.4 ksi), which is comparable to HFIR data. The NST material is weaker in the transverse orientation than in the longitudinal orientation. Some effects of position across the thickness of the wall are also observed; the CTT shift is slightly greater for specimens from the inner region of the wall. Annealing studies indicate complete recovery from embrittlement after 1 h at 400{degrees}C (752{degrees}F). Although the weld metal is significantly tougher than the base metal, the shifts in CTT are comparable. The shifts in CTT for the Shippingport NST are consistent with the test and Army reactor data for irradiations at <232{degrees}C (<450{degrees}F) and show very good agreement with the results for HFIR A212-B steel irradiated in the Oak Ridge Research Reactor (ORR). The effects of irradiation temperature, fluence rate, and neutron flux spectrum are discussed. The results indicate that fluence rate has no effect on radiation embrittlement at rates as low as 2 {times} 10{sup 8} n/cm{sup 2}{center dot}s and at the low operating temperatures of the Shippingport NST, i.e., 55{degrees}C (130{degrees}F). This suggests that the accelerated embrittlement of HFIR surveillance samples is most likely due to the relatively higher proportion of thermal neutrons in the HFIR spectrum compared to that for the test reactors. 28 refs., 25 figs.

More Details

Analysis of thermosyphoning in a steam generator model

Martinez, M.J.; Martinez, G.M.

An analysis of thermosyphoning in a stream generator model is presented. The model considers the transient development of buoyancy-driven steam flow in the steam generator tubing, secondary side heat transfer and an inlet plenum mixing model. Numerical solutions are obtained for conditions intended to simulate the natural circulation phenomena in a 3-Loop pressurized water reactor in a loss-of-coolant accident scenario. The relation between the circulation rate and the heating rate is determined. The sensitivity of the model to various key parameters is examined. 16 refs.

More Details

Static load testing of a heliostat drive

Grossman, James W.

The drive designed and built by the Solar Power Engineering Company (SPECO) for its large area heliostat failed under high wind loads during a winter storm. This report details the testing and analysis done to verify the load capabilities of the rebuilt heliostat drive. Changes in design and improvements in fabrication resulted in a usable drive. 12 figs., 7 tabs.

More Details

18 W/m{sup 2} Mockup for Defense High-Level Waste (Rooms A): In situ data report: Volume 1---Mechanical response gages (February 1985--June 1990). Waste Isolation Pilot Plant (WIPP) Thermal/Structural Interactions Program

Munson, Darrell E.

Data are presented from the 18 W/m{sup 2} Mockup for Defense High-Level Waste, a very large scale in situ test fielded underground at the Waste Isolation Pilot Plant (WIPP). These data include selected fielding information, test configuration, instrumentation activities, and comprehensive results from a large number of gages. The results in this report give measured data from the mechanical response gages, i.e., room closure gages, extensometers, and stress meters emplaced in the test. Construction of the test began in June 1984; gage data in this report cover the complete test duration, that is, to June 1990.

More Details

Expanded coaxial transmission cells for electromagnetic testing

Cernosek, R.W.

Coaxial transmission cells have been developed for testing optical fiber current sensors. Three of these cells are airlines that provide transverse electromagnetic mode operation to 1.0, 2.3, and 13.7 GHz. Standing wave ratios are <1.5 for the unloaded airlines over their given frequency ranges. Solid and liquid dielectric coaxial cells use materials with high relative permittivities, >9.1. A ceramic test cell has a useful frequency range to 2.5 GHz; the liquid cells, filled with propanol, methanol, or water, are good to {approximately}500 MHz. The properties of the liquid cells are described using a model of a multilayer coaxial dielectric system with complex relative permittivities. 15 refs.

More Details

Structural analysis of the source term transportation cask

Hoffman, Edward L.

Structural calculations were performed to evaluate the source-term nuclear fuels transport cask (ST Cask) under various hypothetical accident scenarios. (1) Three-dimensional transient dynamic analyses were performed to evaluate the strength of the cask`s end-closure clamp mechanism. The calculations were performed for two impact orientations: a side impact and a 20{degrees} corner impact. The calculations identified three weaknesses in the clamp design: a gap designed between the clamp and the cask provides a deformation mode which loosens the clamp, two unconstrained swing bolts used to fasten the clamp can lose preload and come free; and insufficient stiffness of the clamp in torsion. (2) An axisymmetric finite element model was used to evaluate the dynamics of end-drops from 5 and 10 ft. The calculations show that loads generated in the end-drops could break the payload support cable and damage the payload winch. Lead slump resulted in both end-drop calculations. The stresses generated in the cask wall during the end-drops was insufficient to cause buckling. (3) To determine the factor of safety to yield, calculations in which the cask was treated as a beam loaded under its own weight were performed for two support configurations: simply supported at both ends and simply supported at the center (trunnion loading). (4) The survival of the cask from a 1-m drop onto a mild steel punch was evaluated based on equations derived from empirical data. The calculations showed that the ST Cask could survive such an event. (5) Finally, the bolt configuration for the upper-closure was analyzed and determined to be inadequate because it does not prevent the closure from sliding relative to the cask body. Specific recommendations for design changes are made in the report to eliminate identified problems.

More Details

Yucca Mountain Project thermal and mechanical codes first benchmark exercise: Part 3, Jointed rock mass analysis; Yucca Mountain Site Characterization Project

Costin, Laurence S.

Thermal and mechanical models for intact and jointed rock mass behavior are being developed, verified, and validated at Sandia National Laboratories for the Yucca Mountain Site Characterization Project. Benchmarking is an essential part of this effort and is one of the tools used to demonstrate verification of engineering software used to solve thermomechanical problems. This report presents the results of the third (and final) phase of the first thermomechanical benchmark exercise. In the first phase of this exercise, nonlinear heat conduction code were used to solve the thermal portion of the benchmark problem. The results from the thermal analysis were then used as input to the second and third phases of the exercise, which consisted of solving the structural portion of the benchmark problem. In the second phase of the exercise, a linear elastic rock mass model was used. In the third phase of the exercise, two different nonlinear jointed rock mass models were used to solve the thermostructural problem. Both models, the Sandia compliant joint model and the RE/SPEC joint empirical model, explicitly incorporate the effect of the joints on the response of the continuum. Three different structural codes, JAC, SANCHO, and SPECTROM-31, were used with the above models in the third phase of the study. Each model was implemented in two different codes so that direct comparisons of results from each model could be made. The results submitted by the participants showed that the finite element solutions using each model were in reasonable agreement. Some consistent differences between the solutions using the two different models were noted but are not considered important to verification of the codes. 9 refs., 18 figs., 8 tabs.

More Details

Procedure development study: Low strain rate and creep experiments; Yucca Mountain Site Characterization Project

Price, Ronald H.

Licensing of the potential nuclear-waste repository at Yucca Mountain by the Nuclear Regulatory Commission would require, among other things, demonstrations of the long term usability of the underground facilities. Such a demonstration involves analysis of the mechanical response of the rock to the presence of underground openings and heat-producing waste, which in turn requires data on the mechanical properties of the rock. This document describes the experimental results from a scoping study which led to the development of procedures for performing quality-affecting rock-mechanics experiments on intact rock. The future experiments performed with these procedures will produce information on the time-dependent deformation of welded tuff and represent one aspect of the overall effort to characterize the rheology of the rock mass. 3 refs., 42 figs., 6 tabs.

More Details

An analysis of a joint shear model for jointed media with orthogonal joint sets; Yucca Mountain Site Characterization Project

Koteras, J.R.

This report describes a joint shear model used in conjunction with a computational model for jointed media with orthogonal joint sets. The joint shear model allows nonlinear behavior for both joint sets. Because nonlinear behavior is allowed for both joint sets, a great many cases must be considered to fully describe the joint shear behavior of the jointed medium. An extensive set of equations is required to describe the joint shear stress and slip displacements that can occur for all the various cases. This report examines possible methods for simplifying this set of equations so that the model can be implemented efficiently form a computational standpoint. The shear model must be examined carefully to obtain a computationally efficient implementation that does not lead to numerical problems. The application to fractures in rock is discussed. 5 refs., 4 figs.

More Details

Impact of fracture coatings on the transfer of water across fracture faces in unsaturated media

Gallegos, David P.

Ground water flow in unsaturated, fractured rock is often assumed to be dominated by the porous matrix component. This is frequently based on the argument that water flowing in the fractures is rapidly imbibed into the rock matrix by capillary suction forces with negligible resistance to uptake at the matrix-fracture interface. However, the existence of a low-permeability mineralized layer or coating at this interface may substantially reduce matrix imbibition and consequently result in fracture-dominated flow. To test this concept, four tuff samples containing natural fractures were obtained from tuff formations in southern Nevada. By performing imbibition experiments into the matrix rock, across a mineralized fracture face and then across a fresh uncoated fracture face, water uptake as a function of time and coating was measured. A relatively simple model has been developed to describe the imbibition behavior. 6 refs.

More Details

NFS, Kerberos, and UNICOS

Haynes, R.A.

The Network File System (NFS) is used in UNIX-based networks to provide transparent file sharing between heterogeneous systems. Although NFS is well-known for being weak in security, it is widely used and has become a de facto standard. This paper examines the user authentication shortcomings of NFS and the approach Sandia National Laboratories has taken to strengthen it with Kerberos. The implementation on a Cray Y-MP8/864 running UNICOS is described and resource/performance issues are discussed. 4 refs., 4 figs.

More Details

Fatigue life prediction of solder joints

Jones, Wendell B.

The current status of lifetime prediction under conditions of thermomechanical creep/fatigue is reviewed. Each method is summarized and the results of the application to solder joints is shown. While each method has been applied with some success, a predictive, phenomenological approach has not been developed and validated. A method which captures the response of a crack to steady-state and cycling environments appears to hold most the most promise to provide a useful design tool.

More Details

Effective path planning through task restriction

Chen, P.C.

We present a simple and effective path planning algorithm, an essential component in facilitating robot programming, based on a series of plausible task restriction. It is designed to solve realistic'' problems very quickly, at the expense of not being able to solve every problem. First, the notion of realistic'' problems is motivated with heuristic arguments and formalized through task restrictions. Next, an algorithm solving the resulting tasks of interest is provided. We prove its corrections and theoretical efficiency, and demonstrate empirically its effectiveness and speed. We expect our algorithm to be of practical significance based on its simplicity and predicted performance. 9 refs., 7 figs.

More Details

SANDROS: A motion planner with performance proportional to task difficulty

Hwang, Yong K.

To address the need of a practical motion planner for manipulators, we present an efficient and resolution-complete algorithm that has performance commensurate with task difficulty. The algorithm uses SANDROS, a new search strategy that combines hierarchical, nonuniform-multi-resolution, and best-fit search to find a near-optimal solution in the configuration space. This algorithm can be applied to any manipulator, and has been tested with 5 and 6-degree-of-freedom robots, with execution time ranging from 20 seconds to 10 minutes on a 16 MIPS workstation. 14 refs., 3 figs., 1 tab.

More Details

HISPLT: A history graphics postprocessor

Thompson, S.L.; Kmetyk, L.N.

HISPLT is a graphics postprocessor designed to plot time histories for wave propagation codes. HISPLT is available for CRAY UNICOS, CRAY CTSS, VAX VMS computer systems, and a variety of UNIX workstations. The original HISPLT code employs a database structure that allows the program to be used without modification to process data generated by many wave propagation codes. HISPLT has recently been modified to process time histories for the reactor safety analysis code, MELCOR. This report provides a complete set of input instructions for HISPLT and provides examples of the types of plotted output that can be generated using HISPLT. 6 refs., 8 figs., 5 tabs.

More Details

Video systems for alarm assessment

Greenwoll, D.A.

The purpose of this NUREG is to present technical information that should be useful to NRC licensees in designing closed-circuit television systems for video alarm assessment. There is a section on each of the major components in a video system: camera, lens, lighting, transmission, synchronization, switcher, monitor, and recorder. Each section includes information on component selection, procurement, installation, test, and maintenance. Considerations for system integration of the components are contained in each section. System emphasis is focused on perimeter intrusion detection and assessment systems. A glossary of video terms is included. 13 figs., 9 tabs.

More Details

Numerical simulation of VAWT stochastic aerodynamic loads produced by atmospheric turbauence: VAWT-SAL code

Homicz, Gregory F.

Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). A principal source of blade fatigue is thought to be the stochastic (i.e., random) aerodynamic loads created by atmospheric turbulence. This report describes the theoretical background of the VAWT Stochastic Aerodynamic Loads (VAWT-SAL) computer code, whose purpose is to numerically simulate these random loads, given the rotor geometry, operating conditions, and assumed turbulence properties. A Double-Multiple-Stream Tube (DMST) analysis is employed to model the rotor's aerodynamic response. The analysis includes the effects of Reynolds number variations, different airfoil sections and chord lengths along the blade span, and an empirical model for dynamic stall effects. The mean ambient wind is assumed to have a shear profile which is described by either a power law or a logarithmic variation with height above ground. Superimposed on this is a full 3-D field of turbulence: i.e., in addition to random fluctuations in time, the turbulence is allowed to vary randomly in planes perpendicular to the mean wind. The influence of flow retardation on the convection of turbulence through the turbine is also modeled. Calculations are presented for the VAWT 34-m Test Bed currently in operation at Bushland, Texas. Predicted time histories of the loads, as well as their Fourier spectra, are presented and discussed. Particular emphasis is placed on the differences between so-called steady-state'' (mean wind only) predictions, and those produced with turbulence present. Somewhat surprisingly, turbulence is found to be capable of either increasing or decreasing the average output power, depending on the turbine's tip-speed ratio. A heuristic explanation for such behavior is postulated, and a simple formula is derived for predicting the magnitude of this effect without the need for a full stochastic simulation. 41 refs., 32 figs., 1 tab.

More Details

Battery test facility hardware, software, and system operation

Rodriguez, G.P.

Division 2525 Battery Test Laboratory is a fully automated battery testing facility used in evaluating various battery technologies. The results of these tests are used to verify developers' claims, characterize prototypes, and assist in identifying the strengths and weaknesses of each technology. The Test Facility consists of a central computer and nine remote computer controlled battery test systems. Data acquired during the battery testing process is sent to the central computer system. The test data is then stored in a large database for future analysis. The central computer system is also used in configuring battery tests. These test configurations are then sent to their appropriate remote battery test sites. The Battery Test Facility can perform a variety of battery tests, which include the following: Life Cycle Testing; Parametric Testing at various temperature levels, cutoff parameters, charge rates, and discharge rates; Constant Power Testing at various power levels; Peak Power Testing at various State-of-Charge levels; Simplified Federal Urban Driving Schedule Tests (SFUDS79). The Battery Test Facility is capable of charging a battery either by constant current, constant voltage, step current levels, or any combination of them. Discharge cycles can be by constant current, constant resistance, constant power, step current levels, or also any combination of them. The Battery Test Facility has been configured to provide the flexibility to evaluate a large variety of battery technologies. These technologies include Lead-Acid, Sodium/Sulfur, Zinc/Bromine, Nickel/Hydrogen, Aluminum/Air, and Nickel/Cadmium batteries.

More Details

Transient dynamic analysis of plates and shells with PRONTO 3D

Bergmann, V.L.

PRONTO 3D is a three-dimensional transient solid dynamics code for analyzing large deformations of highly nonlinear materials subjected to high strain rates. It is a Lagrangian finite element program with explicit integration of the equations of motion through time. This report documents the implementation of a four-scale quadrilateral shell element into Version 6.0 of PRONTO 3D. This report describes the theory, implementation and use of a four-node shell element. Also described are the required architectural changes made to PRONTO 3D to allow multiple element types. Several test problems are documented for verification of the PRONTO 3D implementation and for demonstration of computational savings using shell elements for thin structures. These problems also serve as examples for the user. A complete, updated list of the PRONTO 3D input commands is also included.

More Details

Security system signal supervision

Matter, John C.

This purpose of this NUREG is to present technical information that should be useful to NRC licensees for understanding and applying line supervision techniques to security communication links. A review of security communication links is followed by detailed discussions of link physical protection and DC/AC static supervision and dynamic supervision techniques. Material is also presented on security for atmospheric transmission and video line supervision. A glossary of security communication line supervision terms is appended. 16 figs.

More Details

A methodology for estimating the residual contamination contribution to the source term in a spent-fuel transport cask

Sanders, Thomas L.

This report describes the ranges of the residual contamination that may build up in spent-fuel transport casks. These contamination ranges are calculated based on data taken from published reports and from previously unpublished data supplied by cask transporters. The data involve dose rate measurements, interior smear surveys, and analyses of water flushed out of cask cavities during decontamination operations. A methodology has been developed to estimate the effect of residual contamination on spent-fuel cask containment requirements. Factors in estimating the maximum permissible leak rates include the form of the residual contamination; possible release modes; internal gas-borne depletion; and the temperature, pressure, and vibration characteristics of the cask during transport under normal and accident conditions. 12 refs., 9 figs., 4 tabs.

More Details

Substitute conversion coatings on aluminum for waste minimization

Buchheit, R.G.; Bode, M.D.; Stoner, G.E.

Chromate conversion coatings such as Parker Company`s Alodine coatings are widely used to increase the corrosion resistance of aluminum and aluminum alloys. The primary disadvantage of chromate-based processes is that they use and produce as waste hexavalent chromium (Cr{sup 6+}). We have discovered that the corrosion resistance of Al can be increased by forming an inorganic barrier coating using chemicals that pose a relatively small environmental hazard. These new coatings are formed using a process that is procedurally identical to the basic chromate conversion process. We have prepared new and conventional coatings on 1100 (99.0 Al minimum), 2024-T3 (Al-Cu-Mg) and 7075-T6 (Al-Zn-Mg) commercial sheet stock for accelerated electrochemical testing and coating conductivity testing. Results show that the new coatings offer increased corrosion resistance compared to uncoated Al, but do not yet match the performance of the chromate conversion coatings. The conductivity of these new films on 1100 Al is comparable to that of Alodine coatings; however, the new coatings are more resistive than Alodine coatings on 2024-T3 and 7075-T6.

More Details

In situ monitoring of thin film deposition using optical fibers

Pfeifer, Kent B.

A novel technique to monitor thin film deposition has been developed using optical fibers. The system measures the optical thickness of a film and not the physical thickness which results in accurate film deposition for optical applications regardless of deposition conditions. A discussion of the mathematics necessary to understand the operation of the system is presented. The details of the circuitry and software are presented. The performance of the system is then demonstrated for the deposition of SnO{sub 2} on an optical fiber. An analysis of the inherent errors present in the monitor electronics and measurement system and their effects on the accuracy of the deposition is presented. The system is then applied to several practical situations. First, the system is used to monitor the deposition of SnO{sub 2} films on microscope slides. The films on the slides are then shown to have optical thicknesses which are within 1% of the expected values. The system is next used to deposit SiO anti-reflective coatings on Si. The system is then used to monitor the aging effects seen in SiO and SnO{sub 2}. Finally, a seven layer dielectric mirror made from SnO{sub 2} and MgF{sub 2} films is deposited using the monitor. 25 figs., 1 tabs.

More Details

Experiments in robotic sensori-motor control during grasp

Stansfield, S.A.

This paper presents a series of experiments in robotic sensori-motor control during grasping. The work utilizes a multifingered, dextrous robot hand equipped with a fingertip force sensor to explore dynamic grasp force adjustment during manipulation. The work is primarily concerned with the relationship between the weight of an object and the grasp force required to lift it. Too weak a grasp is unstable and the object will slip from the hand. Too strong a grasp may damage the object and/or the manipulator. An algorithm is presented which uses tactile information from the sensor to dynamically adjust the grasp force during lift. It is assumed that there is no a priori knowledge about the object to be manipulated. The effects of different arm/hand postures and object surfaces is explored. Finally, the use of sensory data to detect unexpected object motion and to signal transitions between manipulation phases -- with the coincident triggering of new motor programs -- is investigated. 15 refs., 12 figs.

More Details

Lead-free solders for electronics applications: Wetting analysis

Vianco, Paul T.

The fabrication of electronic systems has relied upon eutectic tin-lead solder for the attachment of components to printed wiring boards. Higher service temperatures are approaching the durability limits of the eutectic solder. The tin-rich, lead-free solders are being actively studied as alternate alloys. Experiments that examined the wettability of 95Sn-5Sb (wt. %), 95.5Sn-4.0Cu0.5Ag, 96.5Sn-3.5Ag, and the control solder, 60Sn-40Pb, on oxygen-free, high conductivity copper were performed. A rosin based, mildly activated (RMA) flux and three water soluble, organic acid fluxes were used in the wetting balance/meniscometer measurements. The 95.5Sn-4.0Cu-0.5Ag and 95Sn-5Sb alloys exhibited good wetting, with contact angles of 35° < θc < 55° as compared to the excellent performance of the 60Sn-40Pb material (20°< θc <35°). The fair wettability observed with the 96.5Sn 3.5Ag solder (60° < θc <75°) was due in large part to the inability of the fluxes to significantly lower the solder-flux interfacial tension. The wetting rates of the 95.5Sn-4.0Cu-0.5Ag and 95Sn 5Sb solders were comparable to those of the control; the 96.5Sn 3.5Ag alloy wetting rate was slower than the other candidates. The solder film formed on the substrate surface by the 95.5Sn-4.0Cu0.5Ag alloy was very grainy. The water soluble fluxes exhibited a larger degree of residue formation than did the RMA flux.

More Details

A parabolized Navier-Stokes analysis of wake/boundary-layer flow along a cable in tow

22nd Fluid Dynamics, Plasma Dynamics and Lasers Conference

Barnette, Daniel

A parabolized Navier-Stokes analysis of a turbulent, compressible, wake/boundary-layer flow field for a cable in tow is discussed. It is assumed that the cable is being towed by a missile-like configuration whose total drag coefficient is known. The cable is assumed to be perfectly aligned with the missile axis and is subjected to its wake. Modeled in the analysis is the far wake behind the missile, coupled with the turbulent boundary layer growth along the cable. An analytical starting solution for a parabolized Navier-Stokes code is presented. The starting solution is applicable downstream of the towing body's near wake and, therefore, circumvents the complex task of computing the towing body's flow field. An algebraic wake/boundary-layer turbulence model is used to simulate turbulent flow in both the decaying wake and growing boundary layer along the cable. Results are presented for a towing-body freestream Mach number of 5 and a Reynolds number of 36.0 x 106 per ft at select distances along a thin cable.

More Details

A vortex panel method for calculating aircraft downwash on parachutetrajectories

11th Aerodynamic Decelerator Systems Technology Conference

Fullerton, T.L.

Parachute system performance issues such as turnover and wake recontact may be influenced by velocities induced by the wake of the delivering aircraft. The magnitude and direction of these aircraft-induced velocities is dependent on the specific delivering aircraft (as characterized by its size, shape, and weight), the aircraft’s speed and flight path (including any maneuvers which it is performing), and the location on the aircraft from which the system is released. In addition, the parachute deployment sequence is of major importance. The most significant effects will tend to occur after parachute deployment since induced velocities from the aircraft may become significant when compared to the velocity of the parachute system. For example, any downwash behind an aircraft will tend to cause a parachute system, which is horizontally deployed, to fly at a more positive angle of attack. As the forward speed of the parachute system decreases after deployment, this induced angle of attack will tend to increase. This effect tends to retard the rate at which the parachute system “turns over” from a horizontal trajectory into a vertical one. On the other hand, a maneuvering aircraft might produce upwash in its wake which would produce an opposite effect. In this case, the turnover rate would be enhanced. Aircraft-induced velocities may also affect the process known as “wake recontact” in which the momentum of the parachute wake causes the wake itself to overtake the parachute. This sometimes causes severe collapse of the canopy such as reported by Spahr and Wolf. Wake recontact may be either hastened or delayed, depending upon the aircraft flight path and the parachute deployment sequence

More Details

An introduction to testing parachutes in wind tunnels

AIAA Journal

Macha, John M.

This paper reviews some of the technical considerations and current practices for testing parachutes in conventional wind tunnels. Special challenges to the experimentalist caused by the fabric construction, flexible geometry, and bluff shape of parachutes are discussed. In particular, the topics of measurement technique, similarity considerations, and wall interference are addressed in a summary manner. Many references are cited which provide detailed coverage of the state of the art in testing methods.

More Details

The implementation of a standards based heterogeneous network

Tolendino, Lawrence F.

Computer networks, supporting an organization's activities, are prevalent and very important to the organization's mission. Implementing a heterogenous organizational network allows the staff to select the computing environment that best supports their job requirements. This paper outlines the lessons learned implementing a heterogenous computer network based on networking standards such as TCP/IP and Ethernet. Such a network is a viable alternative to a proprietary, vendor supported network and can provide all the functionality customers expect in a computer network. 2 figs.

More Details

Experimental results of direct containment heating by high-pressure melt ejection into the Surtsey vessel: The DCH-3 and DCH-4 tests

Allen, Mark S.

Two experiments, DCH-3 and DCH-4, were performed at the Surtsey test facility to investigate phenomena associated with a high-pressure melt ejection (HPME) reactor accident sequence resulting in direct containment heating (DCH). These experiments were performed using the same experimental apparatus with identical initial conditions, except that the Surtsey test vessel contained air in DCH-3 and argon in DCH-4. Inerting the vessel with argon eliminated chemical reactions between metallic debris and oxygen. Thus, a comparison of the pressure response in DCH-3 and DCH-4 gave an indication of the DCH contribution due to metal/oxygen reactions. 44 refs., 110 figs., 43 tabs.

More Details

Manual of analytical methods for the Industrial Hygiene Chemistry Laboratory

Greulich, K.A.

This Manual is compiled from techniques used in the Industrial Hygiene Chemistry Laboratory of Sandia National Laboratories in Albuquerque, New Mexico. The procedures are similar to those used in other laboratories devoted to industrial hygiene practices. Some of the methods are standard; some, modified to suit our needs; and still others, developed at Sandia. The authors have attempted to present all methods in a simple and concise manner but in sufficient detail to make them readily usable. It is not to be inferred that these methods are universal for any type of sample, but they have been found very reliable for the types of samples mentioned.

More Details

Technology transfer in the national laboratories

Yonas, Gerold Y.

The title of this paper might unfairly provoke readers if it conjures up visions of vast stores of high-tech gadgets in several hundred technology warehouses'' (also known as federal laboratories) around the country, open for browsing by those in search of a bargain. That vision, unfortunately, is a mirage. The term technology transfer'' is not really as accurate as is the term technology team-work,'' a process of sharing ideas and knowledge rather than widgets. In addition, instead of discussing the efforts of more than 700 federal labs in the US, I mean to address only those nine government-owned, contractor-operated multiprogram labs run by the Department of Energy. Nevertheless, the topic of technology team-work opportunities with DOE multiprogram national lab is of significance to those concerned with increasing economic competitiveness and finding technological solutions to a host of national problems. A significant fraction of US R D capabilities rests in the nine DOE multiprogram national laboratories -- and these labs have only just begun to join the other federal laboratories in these efforts due to the passage and recent implementation of the National Competitiveness Technology Transfer Act of 1989.

More Details

Thermal analysis report of the SANDAC V processor module

Nelson, N.M.

The case and junction temperatures of selected integrated circuits (ICs) on the processor module of the SANDAC V computer were calculated using BETAsoft-R,'' a personal computer, thermal analysis software program. The predicted data was then compared to corresponding IC case temperature measurements from laboratory tests of a functional SANDAC V computer. Although the difference between the actual and calculated values was somewhat higher than expected, the results of the analysis indicate that BETAsoft-R'' identified the critical ICs on the processor module and that it is capable of analyzing printed circuit boards for potential thermal problems before the design layout is finalized. 8 figs., 12 tabs.

More Details

A Sandia telephone database system

Tolendino, Lawrence F.

Sandia National Laboratories, Albuquerque, may soon have more responsibility for the operation of its own telephone system. The processes that constitute providing telephone service can all be improved through the use of a central data information system. We studied these processes, determined the requirements for a database system, then designed the first stages of a system that meets our needs for work order handling, trouble reporting, and ISDN hardware assignments. The design was based on an extensive set of applications that have been used for five years to manage the Sandia secure data network. The system utilizes an Ingres database management system and is programmed using the Application-By-Forms tools.

More Details

Electrical characterization of rf plasmas

Miller, Paul A.

Radio-frequency (rf) electrical sources are commonly used to generate plasmas for processing of industrial materials and for related experimental work. Published descriptions of such plasmas usually include generator-power measurements, and occasionally include plasma dc-bias measurements. One or both of these quantitites are also used in industrial feedback ccontrol systems for setpoint regulation. Recent work at Sandia an elsewhere with an experimental rf discharge device (the GEC RF Reference Cell'') has shown that power and dc-bias levels are often insufficient information for specifying the state of the plasma. The plasma can have nonlinear electrical characteristics that cause harmonic generation, and the harmonic levels can depend sensitively on the impedance of the external circuitry at harmonic frequencies. Even though the harmonics may be low in amplitude, they can be directly related to large changes in plasma power and to changes in optical emission from the plasma. Consequently, in order for a worker to truly master the plasma-generation process, it is necessary to understand, measure, and control electrical characteristics of the plamsa. In this paper we describe technique that have been developed from work with the Reference Cell for making electrical measurements on rf plasmas, and we describe surprising observations of harmonic behavior. 10 refs., 4 figs.

More Details

Interim report on conversion of coal to liquids via catalytic hydropyrolysis

Klavetter, E.A.; Salgado, L.V.

The catalytic hydropyrolysis tests performed on coals of varying rank clearly show that high conversions and tar yields can be achieved in a fixed-bed laboratory reactor system. Each of the three types of catalysts utilized, MoS{sub 2} derived from dioxydithiomolybdate, the metal HTO catalysts, and the Pd colloidal catalysts, were shown to be effective for the bituminous coals tested. For the lower rank coals, no significant increase in conversions or tar yields preliminary tests utilizing oil agglomeration as a pretreatment provided encouraging results, with conversions and tar yields achieved similar to using the metal HTO and colloid catalysts. This pretreatment process might be effective for use in catalyst dispersal and coal cleaning, and facilitating coal introduction into a high-pressure reactor. In summary, the data obtained show that catalytic hydropyrolysis on a laboratory scale can achieve the necessary conversions and tar yields to be considered as a potentially viable process for converting coal into liquid products. Through proper dispersal of selected catalysts onto bituminous coals, conversions greater than 80% and tar yields greater than 70% can be achieved at low active metal concentrations. 12 refs., 9 figs., 7 tabs.

More Details

A review of the South Texas Project probabilistic safety analysis for accident frequency estimates and containment binning

Wheeler, Timothy A.

The objective of this review is to evaluate the South Texas Project (STP) Probabilistic Safety Analysis (PSA) for the USNRC. The PSA was reviewed for thoroughness of analysis, accuracy in plant modeling, legitimacy of assumptions, and overall quality of the work. The review is limited to the internal event analysis and the fire sequence analysis. This review is not a quantitative evaluation of the adequacy of the PSA. The adequacy of the PSA depends on the intended uses and must be addressed on a case-by-case basis by the licensee and the NRC. This review identifies strengths, weakness, and areas where additional clarification would assist the NRC in evaluating the PSA for specific regulatory purposes. The licensee, Houston Lighting and Power (HL P), reviewed a draft version of this report prior to its final release to the USNRC. The responses provided by HL P are provided in detail in appendices to this report, and they are summarized in the main body of the report. All issues raised during the review were adequately addressed by HL P in the responses. 27 refs., 4 tabs.

More Details

Interpretation of brine-permeability tests of the Salado Formation at the Waste Isolation Pilot Plant site: First interim report

Beauheim, Richard L.

Pressure-pulse tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Hydraulic conductivities ranging from about 10{sup {minus}14} to 10{sup {minus}11} m/s (permeabilities of about 10{sup {minus}21} to 10{sup {minus}18} m{sup 2}) have been interpreted from nine tests conducted on five stratigraphic intervals within eleven meters of the WIPP underground excavations. Tests of a pure halite layer showed no measurable permeability. Pore pressures in the stratigraphic intervals range from about 0.5 to 9.3 MPa. An anhydrite interbed (Marker Bed 139) appears to be one or more orders of magnitude more permeable than the surrounding halite. Hydraulic conductivities appear to increase, and pore pressures decrease, with increasing proximity to the excavations. These effects are particularly evident within two to three meters of the excavations. Two tests indicated the presence of apparent zero-flow boundaries about two to three meters from the boreholes. The other tests revealed no apparent boundaries within the radii of influence of the tests, which were calculated to range from about four to thirty-five meters from the test holes. The data are insufficient to determine if brine flow through evaporites results from Darcy-like flow driven by pressure gradients within naturally interconnected porosity or from shear deformation around excavations connecting previously isolated pores, thereby providing pathways for fluids at or near lithostatic pressure to be driven towards the low-pressure excavations. Future testing will be performed at greater distances from the excavations to evaluate hydraulic properties and processes beyond the range of excavation effects.

More Details

Direct optical phase shifter for phased-array systems

Proceedings of SPIE - The International Society for Optical Engineering

Vawter, G.A.; Hietala, Vincent M.; Kravitz, Stanley H.; Meyer, W.J.

An all optical circuit in GaAs/AlGaAs for control of phased-array systems using a single photonic integrated circuit chip has the potential for high performance control of phasedarray systems from a small, lightweight, package. Such a circuit based exclusively on combinations of reverse-biased optical phase modulators, waveguide interconnects, corner reflectors, and power splitter combiners with optical-fiber output to the antenna elements has been designed at Sandia National Laboratories. This paper presents some basic features of optical phase modulators for photonic circuit applications and provide relevant performance data as achieved to date. Current structures have been shown to operate with a 76.5°/V-mm figure of merit at 1.06μm and losses as low as 2 cm-1. A novel digital phase shifter to allow direct digital control of phased arrays is also proposed and demonstrated.

More Details

Phased-array antenna control by a monolithic photonic integrated circuit

Proceedings of SPIE - The International Society for Optical Engineering

Hietala, Vincent M.

A novel optical based RF beam steering system is proposed for phased-array antenna systems. The system, COMPASS (Coherent Optical Monolithic Phased Array Steering System), is based on optical heterodyning employed to produce microwave phase shifting. At the heart of the system is a monolithic Photonic Integrated Circuit (PIC) constructed entirely of passive components. Microwave power and control signal distribution to the antenna is accomplished by optical fiber, thus separating the PIC and its control functions from the antenna. This approach promises to reduce size, weight, and complexity of future phased-array antenna systems.

More Details

Sandia severe electrostatic discharge tester: Version 3 (SSET), Serial Number: 1

Barnum, John R.

This report documents the as-built operational performance of Sandia's Severe Electrostatic Discharge Tester Version-3 (SSET-3) SN:2 and lists the hardware and additional documentation delivered to Division 2174 on July 31, 1991. (The supplied items are listed.) The primary emphasis of this report is to provide a qualitative and quantitative evaluation of the SSET against requirements derived from the Severe Human Body ESD model (SHBESD) (1), which is defined in terms of an equivalent circuit (Figure 1.1) and a short-circuit current waveform (Figure 1.2). This report also presents supporting information on the calibration and verification of ancillary equipment used to assess the operation of the SSET. While the documentation of the verification and calibration of ancillary equipment is somewhat lengthy, it is considered necessary because the SSET may be used in situations where its output characteristics will be critically scrutinized. Thus, the supporting documentation is necessary to lend credibility to the performance/verification measurements made on the SSET. 5 refs., 36 figs.

More Details

1991 DOE/Sandia Crystalline Photovoltaic Technology Project Review Meeting

Whipple, M.L.

This document serves as the proceedings for the manual project review meeting held by Sandia's Photovoltaic Technology Research Division. It contains information supplied by each organization making a presentation at the meeting, which was held July 30 through 31, 1991 at the Sheraton Hotel in Albuquerque, New Mexico. Sessions were held to discuss national photovoltaic programs, one-sun crystalline silicon cell research, concentrator silicon cell research, and concentrating collector development.

More Details

Proof-of-Concept Advanced Nonpyrotechnic Smoke Generator Component Test Report

Greenholt, Charles J.

One decade ago, Sandia National Laboratories designed and developed a nonpyrotechnic smoke generator capable of producing large quantities of low corrosivity, low toxicity chemical smoke to be used as a visual obscurant in access delay applications. Utilizing the same chemistry, a proof-of-concept advanced smoke generator is presently being tested. The testing is being conducted to evaluate two new concepts providing unique capabilities. Hemispherical stainless steel bladders are installed in spherically shaped chemical storage reservoirs. This provides positive displacement of the chemicals and permits orientation insensitive operation. Also, a specially designed nozzle/valve is being evaluated as a means of providing a multiple initiation capability. Cyclic operation could be accomplished via time delay circuitry, sensor input, or on demand from the control console. These new capabilities provide distinct advantages. Some advantages may be longer obscuration times, optimal volume obscuration, easier facility sizing, no organic seals in contact with the stored chemicals, and elimination of the requirement to use ultrahigh purity nitrogen as a propellant.

More Details

Steam Explosions of Single Drops of Core-Melt Simulants: Triggering, Work Output and Hydrogen Generation

Nelson, L.S.; Hyndman, D.A.; Duda, P.M.

We have studied triggering of fuel-coolant interactions, the work performed against the surrounding coolant during the interaction, and the generation of hydrogen produced by melt water chemical reactions with laboratory-scale experiments. We used single drops of three core-melt simulants: (a) molten stoichiometric thermite-generated iron-aluminum oxide melts to simulate the core-melt material that might be produced in the severe accident of an oxide fueled reactor; (b) molten aluminum to simulate melt that might be produced in the severe accident of a nonpower reactor; and (c) an intermediate material, aluminum-enriched iron aluminum oxide thermite, that might simulate severe meltdown of an oxide-metal dispersion fuel (cermet). As a result of these experiments, we have concluded that the peak pressure (or impulse) of the transient is not a governing parameter for the triggering of steam explosions of single drops of melt. We have observed maximum pressure-volume work outputs produced by the aluminum-rich and stoichiometric thermite melts of about 70 and 25 J/g of melt; the corresponding values for molten aluminum at 1273 and 1473 K are about 14 and 21 J/g of melt. The extent of metal-water reaction for the stoichiometric and aluminized melts were 13 and 19%. The aluminum melts at 1273 and 1473 K produced approximately 1 and 3% metal-water reaction.

More Details

Hypervelocity Impact Jet Formation [Book Chapter]

Shock Compression of Condensed Matter–1991

Ang, James A.

The hypervelocity impact of a particle on a surface generates a jet of shocked material which is thrown from the impact site. A simple analytic model has been developed to obtain expressions for the evolution of this jet of ejecta. The analysis is based on applying the conservation equations of mass and momentum to the problem of a normal impact of a sphere against a semi-infinite flat target. Expressions are developed for the evolution of the jet velocity, jet release point and the locus of points which describe the ejecta envelope. These analytical ejecta profiles are compared with high speed photographs of impact jet formation.

More Details

Converting a commercial electric direct-drive robot to operate from joint torque commands

Muir, P.F.

Many robot control algorithms for high performance in-contact operations including hybrid force/position, stiffness control and impedance control approaches require the command the joint torques. However, most commercially available robots do not provide joint torque command capabilities. The joint command at the user level is typically position or velocity and at the control developer level is voltage, current, or pulse-width, and the torque generated is a nonlinear function of the command and joint position. To enable the application of high performance in-contact control algorithms to commercially available robots, and thereby facilitate technology transfer from the robot control research community to commercial applications, an methodology has been developed to linearize the torque characteristics of electric motor-amplifier combinations. A four degree of freedom Adept 2 robot, having pulse-width modulation amplifiers and both variable reluctance and brushless DC motors, is converted to operate from joint torque commands to demonstrate the methodology. The commercial robot controller is replaced by a VME-based system incorporating special purpose hardware and firmware programmed from experimental data. The performance improvement is experimentally measured and graphically displayed using three-dimensional plots of torque vs command vs position. The average percentage torque deviation over the command and position ranges is reduced from as much as 76% to below 5% for the direct-drive joints 1, 2 and 4 and is cut by one half in the remaining ball-screw driven joint 3. Further, the torque deviation of the direct-drive joints drops below 2.5% if only the upper 90% of the torque range is considered. 23 refs., 20 figs., 2 tabs.

More Details

Interim report on the effects of brine-saturation and shear stress on consolidation of crushed, natural rock salt from the Waste Isolation Pilot Plant (WIPP)

Zeuch, David H.

The mechanical behavior of crushed natural rock salt is of concern to the Waste Isolation Pilot Plant (WIPP) Project because excavated salt is a candidate material for use as backfill around the waste packages and in storage rooms, shafts and other underground openings. To complement existing studies on the compaction behavior of dry and damp (i.e., unsaturated) crushed rock salt under hydrostatic compression, we initiated an extensive experimental program to evaluate (1) the effect of brine-saturation on the consolidation rates and terminal densities of crushed salt subjected to hydrostatic compression, and (2) the influence of small deviatoric stresses on the consolidation rate damp crushed rock salt. This investigation is incomplete, and laboratory facilities are limited, therefore, in this report we review available results, in order to make available preliminary estimates of the effects of brine-saturation and shear stress on consolidation. Experiments with brine were carried out under nominally drained conditions. Experiments completed to data include five hydrostatic compaction tests on brine-saturated samples, run at pressures ranging from 1.72 to 10.34 MPa, and two prototype shear consolidation experiments run at a mean stress of 3.45 MPa and a stress difference of 0.69 MPa. Both sets of experiments were run at 20{plus minus}0.5 {degrees}C. Although the experiments on brine-saturated crushed rock salt exhibit several discrepancies, we can draw the following conclusions. (1) Though effects associated with brine-saturated apparently have a retarding effect on consolidation, rates are reduced by less than an order of magnitude when compared with unsaturated specimens. Despite saturation, high fractional densities (>0.95) are attainable even on laboratory time scales using pressures well below lithostatic at the WIPP ({approx} 15 MPa). 23 refs., 26 figs., 5 tabs.

More Details

Merlin 2 - A computer program to transfer solution data betwwen finite element meshes

Gartling, David K.

The MERLIN 2 program is designed to transfer data between finite element meshes of arbitrary geometry. The program is structured to accurately interpolate previously computed solutions onto a given mesh and format the resulting data for immediate use in another analysis program. Data from either two-dimensional or three-dimensional meshes may be considered. The theoretical basis and computational algorithms used in the program are described and complete user instructions are presented. Several example problems are included to demonstrate program usage. 13 refs. 15 figs.

More Details

Reference manual for the CONTAIN 1. 1 code for containment severe accident analysis

Washington, Kenneth

This report describes the phenomenological equations and the numerical procedures used by the CONTAIN 1.1 code to determine the conditions within nuclear power plant containment during a severe accident. The CONTAIN detailed models provide the capability to mechanistically calculate the containment internal thermalhydraulic conditions and the amount of radioactive matter that would be released to the environment if there were a leak from the containment. Note that the CONTAIN models can be verified by comparing the code calculations to experimental results. The models described include those to account for the flows of mass and energy between containment compartments, the exchange of energy between the atmosphere and heat structures, the thermodynamic conditions, the distributions of aerosols, the decay and transport of fission products, the deflagration of hydrogen and carbon monoxide, boiling water reactor suppression pool behavior, and engineering safety features, including a spray, fan coolers, and an ice condenser. These models are solved with implicit coupling, where appropriate, to obtain a stable and computationally efficient solution. 52 refs., 36 figs., 9 tabs.

More Details

Primary standards laboratory report 2nd half 1990

Braudaway, D.W.

The Primary Standards Laboratory (PSL) operates a system-wide primary standards and calibration program for the US Department of Energy, Albuquerque Operations Office (DOE/AL). The PSL mission is as follows: to develop and maintain primary standards; to calibrate electrical, physical, and radiation reference standards for customer laboratories (DOE/Al integrated contractors); to conduct technical surveys and audits of these laboratories; and to recommend and implement system-wide improvements. This report summarizes activities of the PSL for the second half of 1990 and provides information pertinent to the operation of the DOE/AL Standards and Calibration Program. Specific areas covered include development projects, improvement projects, calibration and special measurements, surveys and audits, and significant events. Activities in these areas have been at a lower than normal level because of response to increased Environment, Safety, and Health (ES H) concerns and preparation for a Tiger Team visit. Appendices include certifications and reports, commercial calibration laboratories, PSL memoranda, and National Institute of Standards and Technology ((NIST)--formerly the National Bureau of Standards (NBS)) test numbers.

More Details

The SolarTrak solar array tracking controller

Maish, Alexander B.

Sandia National Laboratories has developed an advanced self-contained tracking control system for use with one- or two-axis tracking solar arrays. The SolarTrak system computes the sun's position based on the time and stored position data, and then controls two motors to point the tracker at the sun without using sun sensors. When used with a photovoltaic concentrator array, the system initially performs a self-alignment routine using array-generated current to locate the sun. The routine computes six numbers that are used during the normal operation to correct the array pointing for the tracker's installation misalignment. This enables the tracker to point accurately even with installation misalignments of up to several degrees. The SolarTrak system consists of a control board, which contains a Motorola 68HC11 microcontroller, a power supply board, motor-interface boards, and a hand-held user interface board, which contains a liquid-crystal display and an input keypad. This report contains a thorough discussion of the controller software and hardware, including control algorithms, parts lists and estimated costs (about $300 per system). The performance measured on two trackers is reviewed. Tracking accuracy was better than {plus minus}0.1{degrees} over a full day on one system. A thorough user's manual is included. Companies interested in licensing the technology should contact the Technology Transfer Division of Sandia National Laboratories. 20 refs., 53 figs., 5 tabs.

More Details

Summary of WIPP Room B heater test brine and backfill material data

Krumhansl, James L.

Simulated DHLW (Defense High Level Waste) package performance tests were carried out at the WIPP (Waste Isolation Pilot Plant) by emplacing a number of waste canisters containing electrical heaters into the floor of the mine. Peak temperatures were about 130{degrees}C, and the tests ran for three years. During this time, an unanticipated large amount of water was collected from heater hole BO42. A study was, therefore, undertaken to determine if this fluid was derived from normal weep brines. This was accomplished by comparing the amount of salt deposited by the dried weep brines with the volume of condensed steam collected during the test. Documenting the post-test condition of the various backfills was the other objective of this report. In spite of being exposed to acidic vapors, the bentonite-sand backfill retained its mineralogic integrity. However, the bentonite-sand backfill compacted between the canister and the wall only achieved a density that was about three quarters that of a pore-free material. The bentonite backfill also showed evidence of hair-line cracks through which steam had left the vicinity of the canister. In contrast, compacted crushed salt backfill exhibited no evidence of through-going cracks and was compacted to better than 99% of that of pure nonporous sodium chloride. Thus, the seal provided by a crushed salt backfill appears to be superior to that provided by bentonite. 13 refs., 6 tabs.

More Details

Human factors engineering design guidelines for the software user interface

Allen, H.W.

This report provides system designers with basic human factors information and guidelines for designing and developing the software user interface. A brief discussion of the user interface design philosophy is presented, followed by an overview of the user interface options available (such as color and highlighting), candidate approaches, and discussion of general display concepts and user interface features. We have presented information to facilitate discussions of user interface options, to aid in making final user interface design decisions, and to further the refinement of the user interface. We provide a candidate questionnaire for evaluating your software user interface. 41 refs., 3 tabs.

More Details

Numerical simulation of a split cavity oscillator and rf conversion

Lemke, Raymond W.

We have conducted an extensive investigation of the split cavity oscillator (SCO) using particle-in-cell simulation. The goal of this work is to test and optimize an inverse diode rf convertor for use with a cylindrical SCO, while simultaneously determining factors that control rf extraction efficiency. We present results from simulations of several configurations including the SCO with inverse diode extractor, the SCO in conjunction with post-acceleration and inverse diode extraction, and the SCO, using electron beams with a variety of currents, voltages, and radii. 7 refs., 8 figs.

More Details

Technology assessment of ambient temperature rechargeable lithium batteries for electric vehicle applications

Doddapaneni, N.

This report presents an assessment of ambient temperature rechargeable lithium batteries for electric vehicle applications. It was prepared for the Department of Energy, Office of Propulsion Systems. The status of development programs in industry and research laboratories was determined for several positive and negative electrode materials and for organic liquid and solid polymer electrolytes. Recommendations are suggested for future research and development activities. 217 refs.

More Details

Approximate treatment of a strong explosion and expansion in a near vacuum

Thornton, A.L.

The hydrodynamic blast created by the initiation of a 1 kev X-ray source from an arc-induced ionized gas column, involves density and temperature ratios of such magnitude that the strong shock theory of propagation from continuum fluid mechanics does not apply. Because these simulations occurs in a near vacuum, the continuum equations of motion break down and become invalid during the expansion process as the wavefront density decreases. This report summarizes an approximate treatment of the hydrodynamics of a strong explosion followed by an expanding wavefront in a near vacuum. The analysis was performed in support of the Saturn program to assist the test engineers in the design of a shroud which is optimized to receive the maximum cold X-ray radiation through its aperture while minimizing the hydrodynamic damage to the rest specimens. The analytical treatment uses mass conversion and the assumption of a liner velocity profile to assess the dynamic behavior of the developing wavefront. This technique provides a first estimate of the gas motion and pressure pulse and indicates some general trends of the hydrodynamic phenomenon. 9 refs., 16 figs., 1 tab.

More Details

The feasibility of testing NASA's SCAD concentrator on earth

Mancini, Thomas R.

NASA has proposed that the solar concentrator for the manned space station, referred to as the Solar Concentrator Advanced Development (SCAD) dish, undergo terrestrial testing prior to being deployed in space. Because reliable flight concentrator performance is so important, independent tests of the SCAD concentrator are needed to demonstrate the offset parabolic concept and validate the computer codes needed for predicting concentrator flux profile and power generating capability. This report documents the first phase of a three-phase project to test the SCAD concentrator on sun. The three phases of the project are (1) Feasibility of On-Sun Testing; (2) Detailed Design and Fabrication of Test Fixtures; and (3) Testing and Analysis of Results. The objectives of Phase 1 are to evaluate the feasibility of testing the concentrator on sun in a terrestrial environment and to determine the potential for accurately predicting its performance in space. The feasibility study includes: an evaluation of terrestrial structures to support and track the concentrator; an assessment of methods for protecting the concentrator from the environment when it is not on test; the selection of the most feasible support structure and protection system; an evaluation of the effects of terrestrial solar power levels and sunshapes on the verification of computer codes for predicting the on-orbit performance of the concentrator; the development of a preliminary test plan complete with procedures and instrumentation; and the development of schedule and cost estimates for Phases 2 and 3 of the project.

More Details

Analyzing photographically recorded atomic emission spectra using an automated densitometer

Hareland, W.A.

This report describes a computer-controlled densitometer and software designed for qualitative and semiquantitative analyses of photographically recorded atomic emission spectra. The instrument provides a number of operational features and unique capabilities for spectrochemical analyses. The purpose of this research was the evaluation of the automated densitometer system and computer algorithms for identifying and measuring atomic emission spectra from photographs. 11 refs., 10 figs., 5 tabs.

More Details

Structure of icosahedral borides by Raman spectroscopy

AIP Conference Proceedings

Tallant, David T.

We have obtained Raman spectra of icosahedral boron-rich solids. The spectra of α-rhombohedral boron, boron arsenide, and boron phosphide are consistent with highly-ordered materials. Polarization studies have resulted in symmetry assignments for most of the Raman bands of α-rhombohedral boron. In contrast, the Raman spectra of the boron carbides reveal local substitutional disorder. They also change progressively as a function of carbon content. A structural model for the boron carbides has been developed to explain the Raman and infrared absorption spectra, x-ray data, and electrical and thermal transport properties. Raman spectra of boron carbide samples enriched in 10B, 11B, and 13C reveal details of the atomic motions. The vibrational frequencies and exceptionally narrow linewidths of certain Raman modes are discussed in terms of a ‘‘strong’’ bond model. In this model certain vibrational modes involving relatively stiff bonds between chain atoms, chain and icosahedral atoms, and atoms on different icosahedra are decoupled from the boride lattice by weak, intraicosahedral bonds.

More Details

In situ measurements of rock salt permeability changes due to nearby excavation

Stormont, John C.

The Small-Scale Mine-By was an in situ experiment to measure changes in brine and gas permeability of rock salt as a result of nearby excavation. A series of small-volume pressurized brine- and gas-filled test intervals were established 8 m beneath the floor of Room L1 in the WIPP underground. The test intervals were isolated in the bottom of the 4.8-cm diameter monitoring boreholes with inflatable rubber packers, and are initially pressurized to about 2 MPa. Both brine- and gas-filled test intervals were located 1.25, 1.5, 2, 3, and 4 r from the center of a planned large-diameter hole, where r is the radius of the large-diameter hole. Prior to the drilling of the large-diameter borehole, the responses of both the brine- and gas-filled test intervals were consistent with the formation modeled as a very low permeability, low porosity porous medium with a significant pore (brine) pressure and no measurable gas permeability. The drilling of the mine-by borehole created a zone of dilated, partially saturated rock out to about 1.5 r. The formation pressure increases from near zero at 1.5 r to the pre-excavation value at 4 r. Injection tests reveal a gradient of brine permeabilities from 5 {times} 10{sup {minus}18} m{sup 2} at 1.25 r to about the pre-excavation value (10{sup {minus}21} m{sup 2}) by 3 r. Gas-injection tests reveal measurable gas permeability is limited to within 1.5 r. 17 refs., 24 figs., 6 tabs.

More Details

Microstructures of cubic Al2O3 precipitates in oxygen-implanted aluminum

Nuclear Inst. and Methods in Physics Research, B

Follstaedt, D.M.

The microstructure of Al ion-implanted at room temperature with 17 at.% 0 has been characterized with TEM. The alloy has extremely small (1.5-3.5 nm) oxide precipitates whose crystal structure is interpreted to be a disordered version of γ-Al2O3 having a fcc lattice of O2- ions with Al3+ ions in random interstitial sites. The small sizes can account for the exceptionally high strength of as-implanted alloys: 2500-3300 MPa. Larger precipitates are found when the alloy is annealed 1 2 h at 550°C, which is consistent with its somewhat lower strength: 800-1600 MPa. © 1991.

More Details

Formation and stability of AsH bonds in H-implanted GaAs

Nuclear Inst. and Methods in Physics Research, B

Stein, H.J.

The chemical bonding and isochronal annealing of H implanted into GaAs at 80 K has been investigated by infrared absorption measurements. Based upon the frequency shift when deuterium is substituted for H, and an equivalent band formation in InAs, assignment of a new band at 2029 cm-1 is made to AsH centers. Bonding of H at interstitial As of an As-vacancy pair which anneals between 150 and 250 K is suggested as the structure for the defect. A previously reported absorption band at 1834 cm-1 assigned to GaH centers in H-implanted GaAs increases in intensity when H is released from AsH centers. © 1991.

More Details

Dual porosity models for solute transport at Yucca Mountain

Dykhuizen, Ronald C.

A fractured porous medium is often modeled as a dual porosity system. The subsystems of fractures and matrix pores are assumed to provide two flow continuums. This is especially true when considering solute transport through such a system. Coupling terms are then required to enable the calculation of the exchange of solute between the two subsystems. The coupling terms for solute transport through a fractured medium are derived in this report. This report then investigates the need for the dual porosity models for solute transport. It is shown that the complexity of a dual porosity model is required in some cases to accurately represent the solute motion. However, it is also shown that some situations can be well represented by approximate single porosity models if certain criteria are met. A single porosity model allows the use of analytical solutions. Sample calculations are presented using parameter values representative of Yucca Mountain tuffs. These calculations show that a dual porosity model is not required to model solute transport at Yucca Mountain if the water fluxes are as low as currently believed. 39 refs., 10 figs., 2 tabs.

More Details

A performance assessment methodology for high-level radioactive waste disposal in unsaturated, fractured tuff

Gallegos, David P.

Sandia National Laboratories, has developed a methodology for performance assessment of deep geologic disposal of high-level nuclear waste. The applicability of this performance assessment methodology has been demonstrated for disposal in bedded salt and basalt; it has since been modified for assessment of repositories in unsaturated, fractured tuff. Changes to the methodology are primarily in the form of new or modified ground water flow and radionuclide transport codes. A new computer code, DCM3D, has been developed to model three-dimensional ground-water flow in unsaturated, fractured rock using a dual-continuum approach. The NEFTRAN 2 code has been developed to efficiently model radionuclide transport in time-dependent velocity fields, has the ability to use externally calculated pore velocities and saturations, and includes the effect of saturation dependent retardation factors. In order to use these codes together in performance-assessment-type analyses, code-coupler programs were developed to translate DCM3D output into NEFTRAN 2 input. Other portions of the performance assessment methodology were evaluated as part of modifying the methodology for tuff. The scenario methodology developed under the bedded salt program has been applied to tuff. An investigation of the applicability of uncertainty and sensitivity analysis techniques to non-linear models indicate that Monte Carlo simulation remains the most robust technique for these analyses. No changes have been recommended for the dose and health effects models, nor the biosphere transport models. 52 refs., 1 fig.

More Details

A boundary integral equation method for steady two-dimensional flow in partially saturated media; Yucca Mountain Site Characterization Project

Martinez, Mario J.

The governing equation for steady flow in a partially saturated, porous medium can be written in a linear form if one adopts a hydraulic conductivity function that is exponential in the capillary-pressure head. The resulting linear field equation is well suited to numerical solution by the boundary integral equation method (BIEM). The exponential conductivity function is compared to a more complex form often assumed for tuffs, and is found to be a reasonable approximation over limited ranges of pressure head. A computer code based on the BIEM is described and tested. The BIEM is found to exhibit quadratic convergence with element size reduction on smooth solutions and on singular problems, if mesh grading is used. Agreement between results from the BIEM code an a finite-element code that solves the fully nonlinear problem is excellent, and is achieved at a substantial advantage in computer processing time. 26 refs., 23 figs., 8 tabs.

More Details

Proposed extensions of United States fundamental and derived standards for high-level and transuranic radioactive waste disposal

Klett, R.D.

The development of the present United States standards for transuranic and high-level waste fundamental criteria, derived release limits, and risk limits for probabilistic releases is traced through supporting documentation. The development procedures and the resulting regulations are compared to requirements for the standards, traditional methods of regulating chemical and radiological carcinogens, and recommendations made by the International Commission on Radiological Protection, the Science Advisory Board, the Nuclear Waste Technical Review Board, and individual investigators. The development methodology, logic, assumptions, and models are reviewed relative to the two proposed repositories. Individual difficulties are defined, and their probable causes and potential effects are examined. Several options are suggested for modifying and extending the standards for each of the four major areas; these options make the standards more appropriate for the sites now under consideration, relate them more directly to the actual safety of the repositories, and make them more defensible. Many of the extensions are compatible with the present standards and would not require any significant changes in philosophy, methodology, or format. The benefits of an enhanced quality assurance program are discussed and several other changes in development procedures for waste disposal regulations are suggested. 49 refs., 17 figs., 4 tabs.

More Details

Accelerometer and strain gage evaluation

Madsen, M.M.

This document describes the method developed by Sandia National Laboratories (SNL) to evaluate transducer used in the design certification testing of nuclear material shipping packages. This testing project was performed by SNL for the Office of Civilian Radioactive Waste Management (OCRWM). This evaluation is based on the results of tests conducted to measure ruggedness, failure frequency, repeatability, and manufacturers' calibration data under both field and laboratory conditions. The results of these tests are provided and discussed. The transducer were selected for testing by surveying cask contractors and testing facilities. Important insights relating to operational characteristics of accelerometer types were gained during field testing. 11 refs., 105 figs., 16 tabs.

More Details

Department of Energy Interest and Involvement In Nuclear Plant License Renewal Activities

Bustard, Larry D.

Recognizing the importance of nuclear license renewal to the nation's energy strategy, the Department of Energy (DOE) initiated a plant lifetime improvement program during 1985 to determine the feasibility of the license renewal option for US nuclear plants. Initial activities of the DOE program focused on determining whether there were technical and economic obstacles that might preclude or limit the successful implementation of the license renewal option. To make this determination, DOE cosponsored with the Electric Power Research Institute (EPRI) pilot-plant efforts by Virginia Electric Power and Northern States Power. Both pilot-plant efforts concluded that life extension is technically and economically feasible. In parallel with the pilot-plant activities, DOE performed national economic studies that demonstrated the economic desirability of life extension. Having demonstrated the feasibility of life extension, DOE, in conjunction with EPRI, selected two lead plants to demonstrate the license renewal process. These lead plants are Yankee Atomic's Yankee Rowe facility and Northern States Power's Monticello facility. DOE also initiated activities to develop the technical and regulatory bases to support the license renewal process in the United States. DOE has recently identified nuclear plant license renewal to be an important element of its National Energy Strategy. This paper summarizes the significant results, conclusions, and ongoing activities of the DOE effort.

More Details
Results 95401–95500 of 96,771
Results 95401–95500 of 96,771