Publications

Results 92176–92200 of 99,299

Search results

Jump to search filters

Syntheses and Structures of the Open-Framework Phases (CH(3)NH(3))(3).Zn(4)O(AsO(4))(3) and (CH(3)NH(3))(3).Zn(4)O(PO(4))(3) Related to the M(3)Zn(4)O(XO(4)(3).nH(2)O Family

Chemistry of Materials

Nenoff, Tina M.

The solution-mediated syntheses and single crystal structures of (CH3NH3)3·Zn40(AsO4)3 and (CH3NH3)3·Zn4O(P04)3 are reported. These compounds are built up from vertex-sharing three-dimensional Zn04 + AsO4/P04 tetrahedral frameworks encapsulating methylammonium cations in three-dimensional channel systems. These phases are closely related to the zeolite- like M3Zn4O(XO4)3·nH2O family of phases. Crystal data for (CH3NH3)3·Zn40(AsO4)3, M, = 790.47, monoclinic, space group P21 (No. 4), a = 7.814 (3)Å, b = 15.498 (6)Å, c = 7.815 (3) Å, {beta} = 92.91 (2)0, V = 945.1 (9) Å3, Z = 2, R(F) = 3.01%, RW(F) = 3.98% (2301 reflections, 236 parameters). Crystal data for (CH3NH3)3·Zn40(P04)3: M, = 658.63, monoclinic, space group P21 (No. 4), a = 7.6569 (5) Å, b = 15.241 (1)Å, c= 7.6589 (5) Å, {beta} = 92.740 (1)0, V= 892.7 (5) Å3, Z = 2, R(F)= 8.07%, RW(F)= 9.60% (2694 reflections, 106 parameters).

More Details

A Novel Synthesis of Zeolite W...

Microporous and Mesoporous Materials

Nenoff, Tina M.

Zeolite W has been synthesized using organometallic silicon and aluminum precursors in two hydrothermal systems: organocation containing and organocation-free. The reaction using the organocation yielded a fully crystalline, relatively uniform crystal size product, with no organic molecules occluded in the pores. In contrast, the product obtained from an identical reaction, except for the absence of the organocation, contained amorphous as well as crystalline material and the crystalline phase showed a large diversity of both crystal size and morphology. The use of organometallic precursors, either with or without an organocation, allows for the crystallization of the MER framework at much lower 0H/Si02 and (K+ Na - Al)/Si ratios than is typical of inorganic systems. The reaction products were characterized by XRD, SEM, EDS, and thermal analyses.

More Details

Tetrahedral-Network Organo-Zincophosphates: Syntheses and Structures of (N(2)C(6)H(14)).Zn(HPO(4))(2).H(2)O, H(3)N(CH(2))(3)NH(3).Zn(2)(HPO(4))(3) and (N(2)C(6)H(14)).Zn(3)(HPO(4))(4)

Journal of Solid State Chemistry

Nenoff, Tina M.

The solution-mediated syntheses and single crystal structures of (N2C6H14)·Zn(HPO4)2·H2O (I), H3N(CH2)3NH3·Zn2(HPO4)3 (II), and (N2C6H14)·Zn3(HPO4)4 (III) are described. These phases contain vertex-sharing Zn04 and HP04 tetrahedra, accompanied by doubly- protonated organic cations. Despite their formal chemical relationship, as members of the series of t·Znn(HP04)n+1 (t= template, n = 1-3), these phases adopt fimdamentally different crystal structures, as one-dimensional, two-dimensional, and three-dimensional Zn04/HP04 networks, for I, II, and III respectively. Similarities and differences to some other zinc phosphates are briefly discussed. Crystal data: (N2C6H14)·Zn(HP04)2·H20, Mr = 389.54, monoclinic, space group P21/n (No. 14), a = 9.864 (4) Å, b = 8.679 (4) Å, c = 15.780 (3) Å, β = 106.86 (2)°, V= 1294.2 (8) Å3, Z = 4, R(F) = 4.58%, RW(F) = 5.28% [1055 reflections with I >3σ(I)]. H3N(CH2)3NH3·Zn2(HP04)3, Mr = 494.84, monoclinic, space group P21/c (No. 14), a= 8.593 (2)Å, b= 9.602 (2)Å, c= 17.001 (3)Å, β= 93.571 (8)°, V = 1400.0 (5) Å3, Z = 4, R(F) = 4.09%, RW(F) = 4.81% [2794 reflections with I > 3σ (I)]. (N2C6H14)·Zn3(HP04)4, Mr= 694.25, monoclinic, space group P21/n (No. 14), a = 9.535 (2) Å, b = 23.246 (4)Å, c= 9.587 (2)Å, β= 117.74 (2)°, V= 1880.8 (8) Å3, Z = 4, R(F) = 3.23%, RW(F) = 3.89% [4255 reflections with 1> 3σ(I)].

More Details

Synthesis, Characterization and Ion Exchange of New Na/Nb/M(4+)/O/H(2)O(M=Ti,Zr) Phases

Nenoff, Tina M.

Due to the vast diversity of chemical media in which metal separations are executed, a wide range of ion separation materials are employed. This results in an ongoing effort to discover new phases with novel ion exchange properties. We present here the synthesis of a novel class of thermally and chemically stable microporous, niobate-based materials. Ion exchange studies show these new phases are highly selective for Sr2+ and other bivalent metals.

More Details

Formation of Mesostructured Nanoparticles through Self-Assembly and Aerosol Process

Brinker, C.J.

Silica nanoparticles exhibiting hexagonal, cubic, and vesicular mesostructures have been prepared using aerosol assisted, self-assembled process. This process begins with homogennous aerosol droplets containing silica source, water, ethanol, and surfactant, in which surfactant concentration is far below the critical micelle concentration (cmc). Solvent evaporation enriches silica and surfactant inducing interfacial self-assembly confined to a spherical aerosol droplet and results in formation of completely solid, ordered spherical particles with stable hexagonal, cubic, or vesicular mesostructures.

More Details

Measurement of Fracture Aperture Fields Using Ttransmitted Light: An Evaluation of Measurement Errors and their Influence on Simulations of Flow and Transport through a Single Fracture

Water Resources Research

Pringle, Scott E.

Understanding of single and multi-phase flow and transport in fractures can be greatly enhanced through experimentation in transparent systems (analogs or replicas) where light transmission techniques yield quantitative measurements of aperture, solute concentration, and phase saturation fields. Here we quanti@ aperture field measurement error and demonstrate the influence of this error on the results of flow and transport simulations (hypothesized experimental results) through saturated and partially saturated fractures. find that precision and accuracy can be balanced to greatly improve the technique and We present a measurement protocol to obtain a minimum error field. Simulation results show an increased sensitivity to error as we move from flow to transport and from saturated to partially saturated conditions. Significant sensitivity under partially saturated conditions results in differences in channeling and multiple-peaked breakthrough curves. These results emphasize the critical importance of defining and minimizing error for studies of flow and transpoti in single fractures.

More Details

Novel Dodecaarylporphyrins: Synthesis and Variable Temperature NMR Studies

Tetrahedron Letter

Shelnutt, John A.

An investigation of the synthesis of novel dodecaarylporphyrins using the Suzuki coupling reaction of arylboronic acids with octabromotetraarylporphyrins is reported. Studies of the dynamic properties of these new porphyrins using variable temperature (VT) 1H NMR spectroscopy and molecular mechanics provide interesting insights into their dynamic properties, including the first determination of {beta} aryl rotation in a porphyrin system.

More Details

Nonlinear Amplitude Evolution During Spontaneous Patterning of Ion-Bombarded Si(001)

Journal of Vacuum Science and Technology

Sinclair, Michael B.

The time evolution of the amplitude of periodic nanoscale ripple patterns formed on Ar+ sputtered Si(OOl ) surfaces was examined using a recently developed in situ spectroscopic technique. At sufficiently long times, we find that the amplitude does not continue to grow exponentially as predicted by the standard Bradley-Harper sputter rippling model. In accounting for this discrepancy, we rule out effects related to the concentration of mobile species, high surface curvature, surface energy anisotropy, and ion-surface interactions. We observe that for all wavelengths the amplitude ceases to grow when the width of the topmost terrace of the ripples is reduced to approximately 25 nm. This observation suggests that a short circuit relaxation mechanism limits amplitude . growth. A strategy for influencing the ultimate ripple amplitude is discussed.

More Details

Optimizing Chemical Sensor Array Sizes

Osbourn, Gordon C.

Optimal selection of array sensors for a chemical sensing application is a nontrivial task. It is commonly believed that "more is better" when choosing the number of sensors required to achieve good chemical selectivity. However, cost and system complexity issues point towards the choice of small arrays. A quantitative array optimization is carried out to explore the selectivity of arrays of partially-selective chemical sensors as a function of array size. It is shown that modest numbers (dozens) of target analytes are completely distinguished with a range of arrays sizes. However, the array selectivity and the robustness against sensor sensitivity variability are significantly degraded if the array size is increased above a certain number of sensors, so that relatively small arrays provide the best performance. The results also suggest that data analyses for very large arrays of partially-selective sensors will be optimized by separately anal yzing small sensor subsets.

More Details

Spall Strength Measurements of Concrete for Varying Aggregate Sizes

Reinhart, William D.

Controlled impact experiments have been performed to determine the spall strength of four different concrete compositions. The four concrete compositions are identified as, `SAC-5, CSPC', ("3/4") large, and ("3/8") small, Aggregate. They differ primarily in aggregate size but with average densities varying by less than five percent. Wave profiles from sixteen experiments, with shock amplitudes of 0.07 to 0.55 GPa, concentrate primarily within the elastic regime. Free-surface particle velocity measurements indicate consistent pullback signals in the release profiles, denoting average span strength of approximately 40 MPa. It is the purpose of this paper to present spall measurements under uniaxial strain loading. Notwithstanding considerable wave structure that is a unique characteristic to the heterogeneous nature of the scaled concrete, the spall amplitudes appear reproducible and consistent over the pressure range reported in this study.

More Details

Research on the Use of Robotics in Hazardous Environments at Sandia National Laboratories

Kwok, Kwan S.

Many hazardous material handling needs exist in remote unstructured environments. Currently these operations are accomplished using personnel in direct contact with the hazards. A safe and cost effective alternative to this approach is the use of intelligent robotic systems for safe handling, packaging, transport, and even excavation of hazardous materials. The Intelligent Systems and Robotics Center of Sandia National Laboratories has developed and deployed robotic technologies for use in hazardous environments, three of which have been deployed in DOE production facilities for handling of special nuclear materials. Other systems are currently under development for packaging special nuclear materials. This paper presents an overview of the research activities, including five delivered systems, at %ndia National Laboratories on the use of robotics in hazardous environments.

More Details

Degradation Reactions in SONY-Type Li-Ion Batteries

Nagasubramanian, G.; Roth, E.P.

Thermal instabilities were identified in SONY-type lithium-ion cells and correlated with interactions of cell constituents and reaction products. Three temperature regions of interaction were identified and associated with the state of charge (degree of Li intercalation) of the cell. Anodes were shown to undergo exothermic reactions as low as 100°C involving the solid electrolyte interface (SEI) layer and the LiPF6 salt in the electrolyte (EC: PC: DEC/LiPF6). These reactions could account for the thermal runaway observed in these cells beginning at 100°C. Exothermic reactions were also observed in the 200°C-300°C region between the intercalated lithium anodes, the LiPF6 salt and the PVDF. These reactions were followed by a high- temperature reaction region, 300°C-400°C, also involving the PVDF binder and the intercalated lithium anodes. The solvent was not directly involved in these reactions but served as a moderator and transport medhun. Cathode exotherrnic reactions with the PVDF binder were observed above 200oC and increased with the state of charge (decreasing Li content). This offers an explanation for the observed lower thermal runaway temperatures for charged cells.

More Details

Adaptive Mesh Refinement in CTH

Crawford, David A.

This paper reports progress on implementing a new capability of adaptive mesh refinement into the Eulerian multimaterial shock- physics code CTH. The adaptivity is block-based with refinement and unrefinement occurring in an isotropic 2:1 manner. The code is designed to run on serial, multiprocessor and massive parallel platforms. An approximate factor of three in memory and performance improvements over comparable resolution non-adaptive calculations has-been demonstrated for a number of problems.

More Details

Nucleation and Growth of GaN on GaAs (001) Substrates

Journal of Applied Physics

Drummond, Timothy J.

The nucleation of GaN thin films on GaAs is investigated for growth at 620 "C. An rf plasma cell is used to generate chemically active nitrogen from N2. An arsenic flux is used in the first eight monolayer of nitride growth to enhance nucleation of the cubic phase. Subsequent growth does not require an As flux to preserve the cubic phase. The nucleation of smooth interfaces and GaN films with low stacking fault densities is dependent upon relative concentrations of active nitrogen species in the plasma and on the nitrogen to gallium flux ratio.

More Details

Implementing Management Systems-Based Assessments

Higgins, Karen L.

A management system approach for evaluating environment, safety, health, and quality is in use at Sandia National Laboratories (SNL). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. As a multi-program national laboratory, SNL has many diverse operations including research, engineering development and applications, production, and central services supporting all activities and operations. Basic research examples include fusion power generation, nuclear reactor experiments, and investigation of combustion processes. Engineering development examples are design, testing, and prototype developments of micro-mechanical systems for safe'~arding computer systems, air bags for automobiles, satellite systems, design of transportation systems for nuclear materials, and systems for use in medical applications such as diagnostics and surgery. Production operations include manufacture of instrumented detection devices, radioisotopes, and replacement parts for previously produced engineered systems. Support services include facilities engineering, construction, and site management, site security, packaging and transportation of hazardous materials wastes, ES&H functional programs to establish requirements and guidance to comply with federal, state, local, and contractual requirements and work safety. In this diverse environment, unlike more traditional single function business units, an integrated consistent management system is not typical. Instead, each type of diverse activity has its own management system designed and distributed around the operations, personnel, customers, and facilities (e.g., hazards involved, security, regulatory requirements, and locations). Laboratory managers are not likely to have experience in the more traditional hierarchical or command and control structures and thus do not share oversight expectations found in centralized management systems. The resulting corporate management system gives the appearance of an assembly of multiple, nearly independent operating units. The executive management system maintains these separate units, encouraging autonomy and creativity by establishing a minimum of requirements and procedures. In any organization, senior management has a responsibility to ensure that all operating units are meeting requirements. Part of this responsibility is fulfilled by conducting oversight or assurance activities, to determine the effectiveness of established systems in meeting requirements and performance expectations. Internal independent assessment is one of these assurance activities. Independent appraisals are combined with external audits and appraisals, self-assessments, peer reviews, project reviews, and other internal and external audits (e.g., financial, contractual) for a more complete assurance view. At SNL, internal independent appraisals are performed by the Audit Center, which reports directly to the Executive Vice President. ES&H independent appraisals are the responsibility of the ES&H and Quality Assessments Department, with a staff complement of eight. With our organization's charter to perform internal, independent appraisals, we set out to develop an approach and associated tools, which would be useful in the overall SNL environment and within our resource limitations.

More Details

Ion-Conducting Polymer Films as Chemical Sensors

Hughes, Robert C.; Yelton, W.G.; Patel, S.V.; Pfeifer, Kent B.

Solid Polymer Electrolytes (SPE) are widely used in batteries and fuel cells because of the high ionic conductivity that can be achieved at room temperature. The ions are usually Li or protons, although other ions can be shown to conduct in these polymer films. There has been very little work on using these films as chemical sensors. We have found that thin films of polymers like polyethyleneoxide (PEO) are very sensitive to low concentrations of volatile organic compounds (VOCS) like common solvents. We will present impedance spectroscopy of PEO films in the frequency range 0.01 Hz to 1 MHz for different concentrations of VOCS. We find that the measurement frequency is important for distinguishing ionic conductivity from the double layer capacitance and parasitic capacitances.

More Details

Modeling of Oblique Penetration into Geologic Targets Using Cavity Expansion Penetrator Loading with Target free-Surface Effects

Longcope, Donald B.

A procedure has been developed to represent the loading on a penetrator and its motion during oblique penetration into geologic media. The penetrator is modeled with the explicit dynamics, finite element computer program PRONTO 3D and the coupled pressure on the penetrator is given in a new loading option based on a separate cavity expansion (CE) solution that accounts for the pressure-reduction from a nearby target free surface. The free-surface influ- ence distance is selected in a predictive manner by considering the pressure to expand a spherical cavity in a finite radius sphere of the target material. The CE/PRONTO 3D procedure allows a detailed description of the penetrator for predicting shock environments or structural failure dur- ing the entire penetration event and is sufficiently rapid to be used in design optimization. It has been evaluated by comparing its results with data from two field tests of a full-scale penetrator into frozen soil at an impact angles of 49.6 and 52.5 degrees from the horizontal. The measured penetrator rotations were 24 and 22 degrees, respectively. In the simulation, the rotation was21 degrees and predominately resulted from the pressure reduction of the free surface. Good agree- ment was also found for the penetration depth and axial and lateral acceleration at two locations in the penetrator.

More Details

Thermochemical Analysis for Purification of Polysilicon Melts

Ho, Pauline H.

Chemical Equilibrium calculations are presented that are relevant to the purification of molten silicon by gas-blowing. The equilibrium distributions of silicon, boron, phosphorus carbon and iron among the solid, liquid and gas phases are reported for a variety of added chemicals, temperatures and total pressures. The identities of the dominant chemical species for each element in each phase are also provided for these conditions. The added gases examined are O(2), air, water, wet air, HCl, Cl(2), Cl(2)/O(2), SiCl(4), NH(3), NH(4)OH, and NH(4)Cl. These calculations suggest possible purification schemes, although kinetic or transport limitations may prove to be significant

More Details

Determination of Fire Enviroment in Stacked Cargo Containers with Radioactive Materials Packages

Koski, Jorman A.

Results from a Fire Test with a three-by-three stack of standard 6 m long International Standards Organization shipping containers containing combustible fuels and empty radioactive materials packages are reported and discussed. The stack is intended to simulate fire conditions that could occur during on-deck stowage on container cargo ships. The fire is initated by locating the container stack adjacent to a 9.8 x 6 m pool fire. Temperatures of both cargoes (empty and simulated radioactive materials packages) and containers are recorded and reported. Observations on the duration, intensity and spread of the fire are discussed. Based on the results, models for simulation of fire exposure of radioactive materials packages in such fires are suggested.

More Details

DISCOM2: Distance Computing the SP2 Pilot FY98 Report

Ernest, Martha J.

As a way to bootstrap the DISCOM(2) Distance Computing Program the SP2 Pilot Project was launched in March 1998. The Pilot was directed towards creating an environment to allow Sandia users to run their applications on the Accelerated Strategic Computing Initiative's (ASCI) Blue Pacific computation platform, the unclassified IBM SP2 platform at Lawrence Livermore National Laboratory (LLNL). The DISCOM(2) Pilot leverages the ASCI PSE (Problem solving Environment) efforts in networking and services to baseline the performance of the current system. Efforts in the following areas of the pilot are documented: applications, services, networking, visualization, and the system model. It details not only the running of two Sandia codes CTH and COYOTE on the Blue Pacific platform, but also the buildong of the Sandia National Laboratories (SNL) proxy environment of the RS6000 platforms to support the Sandia users.

More Details

A Massively Parallel Sparse Eigensolver for Structural Dynamics Finite Element Analysis

Reese, Garth M.

Eigenanalysis is a critical component of structural dynamics which is essential for determinating the vibrational response of systems. This effort addresses the development of numerical algorithms associated with scalable eigensolver techniques suitable for use on massively parallel, distributed memory computers that are capable of solving large scale structural dynamics problems. An iterative Lanczos method was determined to be the best choice for the application. Scalability of the eigenproblem depends on scalability of the underlying linear solver. A multi-level solver (FETI) was selected as most promising for this component. Issues relating to heterogeneous materials, mechanisms and multipoint constraints have been examined, and the linear solver algorithm has been developed to incorporate features that result in a scalable, robust algorithm for practical structural dynamics applications. The resulting tools have been demonstrated on large problems representative of a weapon's system.

More Details

Instability of Polyvinylidene Fluoride-Based Polymeric Binder in Lithium-Ion Cells: Final Report

Garcia, M.; Nagasubramanian, G.; Tallant, D.R.; Roth, E.P.

Thermal instabilities were identified in SONY-type lithium-ion cells and correlated with interactions of cell constituents and reaction products. Three temperature regions of interaction were identified and associated with the state of charge (degree of Li intercalation) of the cell. Anodes were shown to undergo exothermic reactions as low as 100 degree C involving the solid electrolyte interface (SEI) layer and the LiPF(6) salt in the electrolyte (EC-PC:DEC/IM LiPF(6)). These reactions could account for the thermal runaway observed in these cells beginning at 100 degree C. Exothermic reactions were also observed in the 200 degree C to 300 degree C region between the intercalated lithium anodes, the LiPF(6) salt, and the PVDF. These reactions were followed by a high-temperature reaction region, 300 degree C to 400 degree C, also involving the PVDF binder and the intercalated lithium anodes. The solvent was not directly involved in these reactions but served as a moderator and transport medium. Cathode exothermic reactions with the PVDF binder were observed above 200 degree C and increased with the state of charge (decreasing Li content). The stability of the PVDF binder as a function of electrochemical cycling was studied using FTIR. The infrared spectra from the extracts of both electrodes indicate that PVDF is chemically modified by exposure to the lithium cell electrolyte (as well as electrochemical cycling) in conjunction with NMP extraction. Preconditioning of PVDF to dehydrohalogenation, which may be occurring by reaction with LiPf(6), makes the PVDF susceptible to attack by a range of nucleophiles.

More Details

Thermal Analysis of a SHIELD Electromigration Test Structure

Mitchell, Robert T.

The steady state and transient thermal behavior of an electromigration test structure was analyzed. The test structure was a Sandia SHIELD (Self-stressing HIgh fregquency rELiability Device) electromigration test device manufactured by an outside vendor. This device has a high frequency oscillator circuit, a buffer circuit to isolate and drive the metal line to the tested (DUT), the DUT to be electromigrated itself, a metal resistance thermometry monitor, and a heater elment to temperature accelerate the electromigration effect.

More Details

Description of a Furnace for the Creation of Anisotropic Porous Metals

Schmale, David T.

A furnace has been built for the purpose of producing anisotropic porous metals through solid-gas eutectic solidification. This process allows control of continuously formed anisotropic pores in metals and was discovered at the State Metallurgical Academic' University in Dnepropetrovsk Ukraine. The process incorporates hydrogen gas within the metal as it solidifies from the molten state. Metals which do not form hydrides, including iron, nickel, aluminum, copper and others can be formed in this manner. The furnace is housed within a ~.64 meter³ (30 ft³) ASME code stamped cylindrical stainless steel vacuum/pressure vessel. The vessel is a water chilled vertical cylinder with removable covers at the top and bottom. It can be evacuated to 20 mTorr or pressurized to 5.5 MPa (800 psi). A charge of 2700 cc (167 in³) of molten metal can be melted in a crucible in the upper portion within a watercooled 30 cm (12 in.) ID induction coil. A 175 kW Inductotherm power source energizes the coil. Vertical actuation of a ceramic stopper rod allows the molten metal to be tapped into a solidification mold beneath the melting crucible. The cylindrical mold rests on a water cooled copper base inducing directional solidification from the bottom. Mixtures of hydrogen and argon gases are introduced during the process. The system is remotely controlled and located in a structure with frangible walls specially designed for possible ambient pressure excursions as a result of equipment failure. This paper includes a general description of the furnace and operating procedure and a detailed description of the control, monitoring and interlock systems.

More Details
Results 92176–92200 of 99,299
Results 92176–92200 of 99,299