Publications

Results 92151–92175 of 99,299

Search results

Jump to search filters

Predicting Microstructural-Level Residual Stresses and Crack Paths in Ceramics

Glass, Sarah J.

Microstructural-level residual stresses arise in ceramics due to thermal expansion anisotropy. The magnitude of these stresses can be very high and may cause spontaneous microcracking during the processing of these materials. The orientation data obtained by backscattered electron diffraction and grain boundary energies obtained by AFM were used in conjunction with an object oriented finite element analysis package (OOF) to predict the magnitude of residual stresses in alumina. Crack initiation and propagation were also simulated based on the Griffith fracture criterion.

More Details

Efficient Global Optimization Under Conditions of Noise and Uncertainty - A Multi-Model Multi-Grid Windowing Approach

Romero, Vicente J.

Incomplete convergence in numerical simulation such as computational physics simulations and/or Monte Carlo simulations can enter into the calculation of the objective function in an optimization problem, producing noise, bias, and topo- graphical inaccuracy in the objective function. These affect accuracy and convergence rate in the optimization problem. This paper is concerned with global searching of a diverse parameter space, graduating to accelerated local convergence to a (hopefully) global optimum, in a framework that acknowledges convergence uncertainty and manages model resolu- tion to efficiently reduce uncertainty in the final optimum. In its own right, the global-to-local optimization engine employed here (devised for noise tolerance) performs better than other classical and contemporary optimization approaches tried individually and in combination on the "industrial" test problem to be presented.

More Details

Measuring Property Management Risk and Loss: Step One Toward Managing Property on a Foundation of Risk, Cost, and Benefit

The Property Professional

Johnson, Curtis M.

This is a period of ever-tightening defense budgets and continuing pressure on the public sector to be more commercial-like, Property policies, practices, and regulations are increasingly being challenged and changed. In these times, we must be leaders in understanding and defining the value of our profession from a commercial standpoint so that we can provide the right services to our customers and explain and defend the value of those services. To do so, we must step outside current property management practices, regulations, and oversight. We must learn to think and speak in the language of those who fund us--a financial language of risk, cost, and benefit. Regardless of regulation and oversight, our bosses are demanding that we demonstrate (financially) the benefits of current practice, or else. This article is intended to be the beginning of an effort to understand and define our profession in terms of risk, cost, and benefit so that we can meet these new challenges. The first step in this effort must be defining and measuring risk, cost, and benefit. Our costs, although sometimes difficult to capture, are easy to understand: they are almost exclusively the effort, both within and without the property management organization, involved in managing property. Unfortunately, property risks and benefits are not so simple or so well understood. Generally, risks and benefits are identified and measured through physical inventory results: potential and actual shortages. This paper will explore the weaknesses in the current understanding and use of shortage information as the yardstick for property management risks and performance. It will define a new framework for understanding the purpose and value of property management. And finally, it will set a course for a new method of measuring and valuing physical inventoty shortages. This new method will yield accurate and useful measures of property management risk and benefit. Once risk and benefit are accurately understood and measured, it will be possible to evaluate, adjust, and explain property management practices and regulations from a commercial, financial perspective; it will be possible for us to be the leaders in redefining the purpose and value of the property management profession for today's environment.

More Details

PdMn and PdFe: New Materials for Temperature Measurement Near 2K

Journal of Low-Temperature Physics

Aselage, Terrence L.

Interest in the critical dynamics of superfluid 4 He in microgravity conditions has motivated the development of new high resolution thermometry technol- ogy for use in space experiments near 2K. The current material commonly used as the temperature sensing element for high resolution thermometers (HRTs) is copper ammonium bromide [Cu(NH4)2Br42H20) or "CAB", which undergoes a ferromagnetic phase transition at 1.8K1. HRTs made from CAB have demonstrated low drift (< 10fK/s) and a temperature resolu- tion of O.lnK. Unfortunately, paramagnetic salts such as CAB are difficult to prepare and handle, corrosive to most metals, and become dehydrated if kept, under vacuum conditions at room temperature. We have developed a magnetic thermometer using dilute magnetic alloys of Mn or Fe dissolved in a pure Pd matrix. These metallic thermometers are easy to fabricate, chemically inert, and mechanically robust. Unlike salts, they may be directly soldered to the stage to be measured. Also, the Curie temperature can be varied by changing the concentration of Fe or Mn, making them available for use in a wide temperature range. Susceptibility measurements, as well as preliminary noise and drifl measurements, show them, to have sub-nK resolution, with a drift of less than 10-13 K/s.

More Details

High-Surety Telemedicine in a Distributed, 'Plug-andPlan' Environment

Craft, Richard L.

Commercial telemedicine systems are increasingly functional, incorporating video-conferencing capabilities, diagnostic peripherals, medication reminders, and patient education services. However, these systems (1) rarely utilize information architectures which allow them to be easily integrated with existing health information networks and (2) do not always protect patient confidentiality with adequate security mechanisms. Using object-oriented methods and software wrappers, we illustrate the transformation of an existing stand-alone telemedicine system into `plug-and-play' components that function in a distributed medical information environment. We show, through the use of open standards and published component interfaces, that commercial telemedicine offerings which were once incompatible with electronic patient record systems can now share relevant data with clinical information repositories while at the same time hiding the proprietary implementations of the respective systems. Additionally, we illustrate how leading-edge technology can secure this distributed telemedicine environment, maintaining patient confidentiality and the integrity of the associated electronic medical data. Information surety technology also encourages the development of telemedicine systems that have both read and write access to electronic medical records containing patient-identifiable information. The win-win approach to telemedicine information system development preserves investments in legacy software and hardware while promoting security and interoperability in a distributed environment.

More Details

Lessons Learned from Sandia National Laboratories' Operational Readiness Review of the Annular Core Research Reactor (ACRR)

Bendure, Albert

The Sandia ACRR (a Hazard Category 2 Nuclear Reactor Facility) was defueled in June 1997 to modify the reactor core and control system to produce medical radioisotopes for the Department of Energy (DOE) Isotope Production Program. The DOE determined that an Operational Readiness Review (ORR) was required to confirm readiness to begin operations within the revised safety basis. This paper addresses the ORR Process, lessons learned from the Sandia and DOE ORRS of the ACRR, and the use of the ORR to confirm authorization basis implementation.

More Details

The SNL/NM Classified Waste Landfill Excavation: Lessons Learned Moving from Planning to Implementation

Galloway, R.B.

The Sandia National Laboratories/New Mexico (SNL/NM) Environmental Restoration Project is halfway through excavating the Classified Waste Landfill in Technical Area II, a disposal area for weapon components for approximately 40 years. While the planning phase of any project is important, it is only a means of getting to the field implementation phase where reality quickly sinks in. Documents outlining the general processes are developed, heavy equipment, supply needs, requisite skills, and staffing levels are anticipated, and contingencies for waste management are put in place. However, the nature of landfill excavation dictates that even the most detailed plans will probably change. This project is proving that trying to account for undefined variables and predicting the total cost of landfill remediation is very difficult if the contents are not well known. In landfill excavation, contingency cannot be minimized. During development of the waste management plan, it was recognized that even the best forecasting could not formulate the perfect cradle-to-grave processes because waste streams are rarely definable before excavation begins. Typically, as excavation progresses and waste streams are generated, new characterization information allows further definition of disposal options which, in turn, modify the generation/management process. A general plan combined with close involvement of waste management personnel to resolve characterization and packaging questions during generation has worked very well. And, as expected, each new pit excavated creates new waste management challenges. The material excavated consists primarily of classified weapon assemblies and related components, so disposition must include demilitarization and sanitization. The demilitarization task at the start of the project was provided by an SNL/NM group that has since lost their funding and operational capability. This project is having to take on the task of disassembly, destruction, and recycling of classified components, along with the associated costs and infrastmcture. Very stringent radiological controls were imposed on site operations during the planning phase. Radiological controls that are not justified significantly impact the efficiency and cost of operations. If the initial approach is too conservative, there should be well-defined provisions for scaling down the protective measures to reflect the actual risks. Once the effectiveness of early detection, monitoring, and surveys is proven, radiological controls and postings should be re-evaluated to verify that they are appropriate. High levels of heavy metals dust were not anticipated during the planning phase but were suspected, then confirmed, during material handling. Respiratory protection and monitoring were upgraded accordingly and the costs added to the baseline. In contrast to radiological constraints, industrial hygiene guidelines were worked into the process with a minimum of adverse impact. While a lot of unforeseen expenses occur, some expected costs can be reduced. During the planning phase, the anticipated need to adequately characterize a variety of radionuclides in soil led to using Large Area Gamma Spectroscopy (LAGS) to survey all the soil excavated. About a quarter of the way through the project, it was obvious that very little radioactive material was present in the excavated soils. Since all the soil is processed through a screen plant, producing a fairly homogeneous mix, a more common method of sampling soil piles was implemented to replace the LAGS unit, increase productivity, and reduce costs. In summary, the most important lesson is to expect and be ready to change. Excavating a landfill requires the flexibility to quickly adjust processes to handle the unknown variables, and close attention to detail so all the different facets of the project are kept under control.

More Details

Stability of trapped electrons in SiO2

Applied Physics Letters

Fleetwood, Daniel M.

Thermally stimulated current and capacitance voltage methods are used to investigate the thermal stability of trapped electrons associated with radiation-induced trapped positive charge in metaloxide-semiconductor capacitors. The density of deeply trapped electrons in radiation-hardened 45 nm oxides exceeds that of shallow electrons by a factor of ∼3 after radiation exposure, and by up to a factor of 10 or more during biased annealing. Shallow electron traps anneal faster than deep traps, and exhibit response that is qualitatively consistent with existing models of compensated E′γ centers in SiO2. Deeper traps may be part of a different dipole complex, and/or have shifted energy levels that inhibit charge exchange with the Si. © 1999 American Institute of Physics.

More Details

Theoretical Energy Release of Thermites, Intermetallics, and Combustible Metals

Fischer, S.H.

Thermite mixtures, intermetallic reactants, and metal fuels have long been used in pyrotechnic applications. Advantages of these systems typically include high energy density, high combustion temperature, and a wide range of gas production. They generally exhibit high temperature stability and possess insensitive ignition properties. For the specific applications of humanitarian demining and disposal of unexploded ordnance, these pyrotechnic formulations offer additional benefits. The combination of high thermal input with low brisance can be used to neutralize the energetic materials in mines and other ordnance without the "explosive" high-blast-pressure events that can cause extensive collateral damage to personnel, facilities, and the environment. In this paper, we review the applications, benefits, and characteristics of thermite mixtures, intermetallic reactants, and metal fuels. Calculated values for reactant density, heat of reaction (per unit mass and per unit volume), and reaction temperature (without and with consideration of phase changes and the variation of specific heat values) are tabulated. These data are ranked in several ways, according to density, heat of reaction, reaction temperature, and gas production.

More Details

Effect on Performance of Composition of Li-Ion Carbon Anodes Derived from PMAN/DVB Copolymers

Guidotti, Ronald A.

The effects on electrochemical performance of the nitrogen content of disordered carbons derived from polymethacryonitrile (PMAN)-divinylbenzene (DVB) copolymers were examined in galvanostatic cycling tests between 2 V and 0.01 V vs. Li/Li+ in lM LiPF6/ethylene carbonate (EC)-dimethyl carbonate (DMC). The first-cycle reversible capacities and coulombic efficiencies increased with increase in the level of nitrogen for samples prepared at 700°C. However, the degree of fade also increased. Similar tests were performed on materials that were additionally heated at 1,000° and 1,300°C for five hours. Loss of nitrogen, oxygen, and hydrogen occurred under these conditions, with none remaining at the highest temperature in all cases but one. The pyrolysis temperature dominated the electrochemical performance for these samples, with lower reversible and irreversible capacities for the first intercalation cycle as the pyrolysis temperature was increased. Fade was reduced and coulombic efficiencies also improved with increase in temperate. The large irreversible capacities and high fade of these materials makes them unsuitable for use in Li-ion cells.

More Details

Overview of Cooperative Monitoring Concepts and the CMC

Biringer, Kent L.

Cooperative monitoring holds the promise of utilizing many technologies from conflicts of the past to implement agreements of peace in the future. Important approaches to accomplish this are to develop the framework for assessing monitoring opportunities and to provide education and training on the technologies and experience available for sharing with others. The Cooperative Monitoring Center (CMC) at Sandia National Laboratories is working closely with agencies throughout the federal government, academics at home and abroad, and regional organizations to provide the technical tools needed to assess, design, analyze, and implement these cooperative agreements. In doing so, the goals of building regional confidence and increasing trust and communication can be furthered.

More Details

Prediction of Tungsten CMP Pad Life Using Blanket Removal Rate Data and Endpoint Data Obtained from Process Temperature and Carrier Motor Current Measurments

Stein, David J.

Several techniques to predict pad failure during tungsten CMP were investigated for a specific consumable set. These techniques include blanket polish rate measurements and metrics derived from two endpoint detection schemes. Blanket polish rate decreased significantly near pad failure. Metrics from the thermal endpoint technique included change in peak temperature, change in the time to reach peak temperature, and the change in the slope of the temperature trace just prior to peak temperature all as a function of pad life. Average carrier motor current before endpoint was also investigated. Changes in these metrics were observed however these changes, excluding time to peak process temperature, were either not consistent between pads or too noisy to be reliable predictors of pad failure.

More Details

Analysis of In-Situ Vibration Monitoring for End-Point Detection of CMP Planarization Processes

Hetherington, Dale L.

This paper details the analysis of vibration monitoring for end-point control in oxide CMP processes. Two piezoelectric accelerometers were integrated onto the backside of a stainless steel polishing head of an IPEC 472 polisher. One sensor was placed perpendicular to the carrier plate (vertical) and the other parallel to the plate (horizontal). Wafers patterned with metal and coated with oxide material were polished at different speeds and pressures. Our results show that it is possible to sense a change in the vibration signal over time during planarization of oxide material on patterned wafers. The horizontal accelerometer showed more sensitivity to change in vibration amplitude compared to the vertical accelerometer for a given polish condition. At low carrier and platen rotation rates, the change in vibration signal over time at fixed frequencies decreased approximately ½ - 1 order of magnitude (over the 2 to 10 psi polish pressure ranges). At high rotation speeds, the vibration signal remained essentially constant indicating that other factors dominated the vibration signaL These results show that while it is possible to sense changes in acceleration during polishing, more robust hardware and signal processing algorithms are required to ensure its use over a wide range of process conditions.

More Details

A Special Application Coiled Tubing Applied Plug for Geothermal Well Casing Remediation

Knudsen, Steven D.

Casing deformation in wells is a common problem in many geothermal fields. Casing remediation is necessary to keep wells in production and occasionally, to even enter the well for an approved plug and abandonment procedure. The costly alternative to casing remediation is to incur the expense of drilling a new well to maintain production or drilling a well to intersect a badly damaged well below the deformation for abandonment purposes. The U.S. Department of Energy and the Geothermal Drilling Organization sponsor research and development work at Sandia National Laboratories in an effort to reduce these remediation expenditures. Sandia, in cooperation with Halliburton Energy Services, has developed a low cost, commercially available, bridge-plug-type packer for use in geothermal well environments. This report documents the development and testing of this tool for use in casing remediation work.

More Details

A Method for Achieving Constant Rotation Rates in a Micro-Orthogonal Linkage System

Journal of Micromechanics and Microengineering

Dickey, F.M.; Holswade, S.C.; Romero, L.A.

Silicon micromachine designs include engines that consist of orthog- onally oriented linear comb drive actuators mechanically connected to a rotating gear. These gears are as small as 50 {micro}m in diameter and can be driven at rotation rates exceeding 300,000 rpm. Generally, these en- gines will run with non-uniform rotation rates if the drive signals are not properly designed and maintained over a range of system parameters. We present a method for producing constant rotation rates in a micro-engine driven by an orthogonal linkage system. We show that provided the val- ues of certain masses, springs, damping factors, and lever arms are in the right proportions, the system behaves as though it were symmetrical. We will refer to systems built in this way as being quasi-symmetrical. We show that if a system is built quasi-symmetrically , then it is possible to achieve constant rotation rates even if one does not know the form of the friction function, or the value of the friction. We analyze this case in some detail.

More Details

Automatic Visualization of Software Requirements: Reactive Systems

Winter, V.L.

In this paper we present an approach that facilitates the validation of high consequence system requirements. This approach consists of automatically generating a graphical representation from an informal document. Our choice of a graphical notation is statecharts. We proceed in two steps: we first extract a hierarchical decomposition tree from a textual description, then we draw a graph that models the statechart in a hierarchical fashion. The resulting drawing is an effective requirements assessment tool that allows the end user to easily pinpoint inconsistencies and incompleteness.

More Details

Apparent Charge Transfer at Semiconductor Surfaces

Physical Review B

Carpinelli, Joseph M.; Stumpf, Roland R.; Weitering, Hanno H.

We investigate the apparent charge transfer between adatoms in the GeXPb[l.XjGe(lll) interface both experimentally and theoretically. Scanning tunneling microscopy and surface core level measurements suggest significant charge transfer from the Ge adatoms to the Pb adatoms. However, first-principles calculations unambiguously find that the total electronic displacement is negligibly small, and that the results of published experiments can be explained as a result of bond rearrangement.

More Details

Large Friction Anisotropy of a Polydiacetylene Monolayer

Tribology Letters

Carpick, R.W.

Friction force microscopy measurements of a polydiacetylene monolayer film reveal a 300% friction anisotropy that is correlated with the film structure. The film consists of a monolayer of the red form of N-(2-ethanol)- 10,12 pentacosadiynamide, prepared on a Langmuir trough and deposited on a mica substrate. As confirmed by atomic force microscopy and fluorescence microscopy, the monolayer consists of domains of linearly oriented conjugated backbones with pendant hydrocarbon side chains above and below the backbones. Maximum friction occurs when the sliding direction is perpendicular to the backbone. We propose that the backbones impose anisotropic packing of the hydrocarbon side chains which leads to the observed friction anisotropy. Friction anisotropy is therefore a sensitive, optically-independent indicator of polymer backbone direction and monolayer structural properties.

More Details

Polymerization of the E and Z Isomers of Bis-(Triethoxysilyl)-2-Butene

Shaltout, R.M.

We have synthesized the Z and E isomers of 1,4-bis(triethoxysilyl)-2- butene and polymerized them under acid and base catalyzed sol-gel conditions. As expected the E system formed crosslinked, insoluble gels. The Z isomer, by nature of its geometry, formed high molecular weight, soluble polymeric products under acidic conditions. We were able to prepare and isolate both the cyclic disilsesquioxane monomer, and its dimer. Comparison of their spectral characterization with that of the soluble polymers suggests that the cyclics are present within the polymers. lle synthesis of a dimer likely present at some early stage of the polymerization suggests that we may be able to control the reaction and form rigid polymers with controllable tacticity. In addition, most of the gels were found to be non-porous indicating that the gels were, in fact, more compliant than ethenylene-bridged polysilsesquioxanes leading to collapse of pores during drying.

More Details

Remote Mine Detection Technologies for Land and Water Environments

Hoover, Eddie R.

The detection of mines, both during and after hostilities, is a growing international problem. It limits military operations during wartime and unrecovered mines create tragic consequences for civilians. From a purely humanitarian standpoint an estimated 100 million or more unrecovered mines are located in over 60 countries worldwide. This paper presents an overview of some of the technologies currently being investigated by Sandia National Laboratories for the detection and monitoring of minefields in land and water environments. The three technical areas described in this paper are: 1) the development of new mathematical techniques for combining or fusing the data from multiple sources for enhanced decision-making; 2) an environmental fate and transport (EF&T) analysis approach that is central to improving trace chemical sensing technique; and 3) the investigation of an underwater range imaging device to aid in locating and characterizing mines and other obstacles in coastal waters.

More Details

Use of Reciprocal Lattice Layer Spacing in Electron Backscatter Diffraction Pattern Analysis

Ultramicroscopy

Michael, Joseph R.

In the scanning electron microscope (SEM), using electron backscattered diffraction (EBSD), it is possible to measure the spacing of the layers in the reciprocal lattice. These values are of great use in confirming the identification of phases. The technique derives the layer spacing from the HOLZ rings which appear in patterns from many materials. The method adapts results from convergent-beam electron diffraction (CBED) in the transmission electron microscope (TEM). For many materials the measured layer spacing compares well with the calculated layer spacing. A noted exception is for higher atomic number materials. In these cases an extrapolation procedure is described that requires layer spacing measurements at a range of accelerating voltages. This procedure is shown to improves the accuracy of the technique significantly. The application of layer spacing measurements in EBSD is shown to be of use for the analysis of two polytypes of SiC.

More Details

Assurance in Agent-Based Systems

Goldsmith, Steven Y.

Our vision of the future of information systems is one that includes engineered collectives of software agents which are situated in an environment over years and which increasingly improve the performance of the overall system of which they are a part. At a minimum, the movement of agent and multi-agent technology into National Security applications, including their use in information assurance, is apparent today. The use of deliberative, autonomous agents in high-consequence/high-security applications will require a commensurate level of protection and confidence in the predictability of system-level behavior. At Sandia National Laboratories, we have defined and are addressing a research agenda that integrates the surety (safety, security, and reliability) into agent-based systems at a deep level. Surety is addressed at multiple levels: The integrity of individual agents must be protected by addressing potential failure modes and vulnerabilities to malevolent threats. Providing for the surety of the collective requires attention to communications surety issues and mechanisms for identifying and working with trusted collaborators. At the highest level, using agent-based collectives within a large-scale distributed system requires the development of principled design methods to deliver the desired emergent performance or surety characteristics. This position paper will outline the research directions underway at Sandia, will discuss relevant work being performed elsewhere, and will report progress to date toward assurance in agent-based systems.

More Details
Results 92151–92175 of 99,299
Results 92151–92175 of 99,299