Publications

Results 90426–90450 of 99,299

Search results

Jump to search filters

Modeling Error and Adaptivity in Nonlinear Continuum Mechanics

Hammerand, Daniel C.

In this report, computable global bounds on errors due to the use of various mathematical models of physical phenomena are derived. The procedure involves identifying a so-called fine model among a class of models of certain events and then using that model as a datum with respect to which coarser models can be compared. The error inherent in a coarse model, compared to the fine datum, can be bounded by residual functionals unambiguously defined by solutions of the coarse model. Whenever there exist hierarchical classes of models in which levels of sophistication of various coarse models can be defined, an adaptive modeling strategy can be implemented to control modeling error. In the present work, the class of models is within those embodied in nonlinear continuum mechanics.

More Details

The Embudito Mission: A Case Study of the Systematics of Autonomous Ground Mobile Robots

Eicker, Patrick J.

Ground mobile robots are much in the mind of defense planners at this time, being considered for a significant variety of missions with a diversity ranging from logistics supply to reconnaissance and surveillance. While there has been a very large amount of basic research funded in the last quarter century devoted to mobile robots and their supporting component technologies, little of this science base has been fully developed and deployed--notable exceptions being NASA's Mars rover and several terrestrial derivatives. The material in this paper was developed as a first exemplary step in the development of a more systematic approach to the R and D of ground mobile robots.

More Details

Fundamental Understanding and Development of Low-Cost, High-Efficient Silicon Solar Cells Final Progress Report: Sept. 1999 - June 2000

Ruby, Douglas S.

The overall objectives of this program are to (1) develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

More Details

Measuring the Predictive Capability of Computational Models: Principles and Methods, Issues and Illustrations

Easterling, Robert G.

It is critically important, for the sake of credible computational predictions, that model-validation experiments be designed, conducted, and analyzed in ways that provide for measuring predictive capability. I first develop a conceptual framework for designing and conducting a suite of physical experiments and calculations (ranging from phenomenological to integral levels), then analyzing the results first to (statistically) measure predictive capability in the experimental situations then to provide a basis for inferring the uncertainty of a computational-model prediction of system or component performance in an application environment or configuration that cannot or will not be tested. Several attendant issues are discussed in general, then illustrated via a simple linear model and a shock physics example. The primary messages I wish to convey are: (1) The only way to measure predictive capability is via suites of experiments and corresponding computations in testable environments and configurations; (2) Any measurement of predictive capability is a function of experimental data and hence is statistical in nature; (3) A critical inferential link is required to connect observed prediction errors in experimental contexts to bounds on prediction errors in untested applications. Such a connection may require extrapolating both the computational model and the observed extra-model variability (the prediction errors: nature minus model); (4) Model validation is not binary. Passing a validation test does not mean that the model can be used as a surrogate for nature; (5) Model validation experiments should be designed and conducted in ways that permit a realistic estimate of prediction errors, or extra-model variability, in application environments; (6) Code uncertainty-propagation analyses do not (and cannot) characterize prediction error (nature vs. computational prediction); (7) There are trade-offs between model complexity and the ability to measure a computer model's predictive capability that need to be addressed in any particular application; and (8) Adequate quantification of predictive capability, even in greatly simplified situations, can require a substantial number of model-validation experiments.

More Details

Dust in the Ion Wind: A Model for Plasma Dust Particle Dynamics

Riley, Merle E.

A model is developed for the forces acting on a micrometer-size particle (dust) suspended within a plasma sheath. The significant forces acting on a single particle are gravity, neutral gas drag, electric field, and the ion wind due to ion flow to the electrode. It is shown that an instability in the small-amplitude dust oscillation might exist if the conditions are appropriate. In such a case the forcing term due to the ion wind exceeds the damping of the gas drag. The basic physical cause for the instability is that the ion wind force can be a decreasing function of the relative ion-particle velocity. However it seems very unlikely the appropriate conditions for instability are present in typical dusty plasmas.

More Details

Gridless Compressible Flow: A White Paper

Strickland, James H.

In this paper the development of a gridless method to solve compressible flow problems is discussed. The governing evolution equations for velocity divergence {delta}, vorticity {omega}, density {rho}, and temperature T are obtained from the primitive variable Navier-Stokes equations. Simplifications to the equations resulting from assumptions of ideal gas behavior, adiabatic flow, and/or constant viscosity coefficients are given. A general solution technique is outlined with some discussion regarding alternative approaches. Two radial flow model problems are considered which are solved using both a finite difference method and a compressible particle method. The first of these is an isentropic inviscid 1D spherical flow which initially has a Gaussian temperature distribution with zero velocity everywhere. The second problem is an isentropic inviscid 2D radial flow which has an initial vorticity distribution with constant temperature everywhere. Results from the finite difference and compressible particle calculations are compared in each case. A summary of the results obtained herein is given along with recommendations for continuing the work.

More Details

FILM-30: A Heat Transfer Properties Code for Water Coolant

Youchison, Dennis L.

A FORTRAN computer code has been written to calculate the heat transfer properties at the wetted perimeter of a coolant channel when provided the bulk water conditions. This computer code is titled FILM-30 and the code calculates its heat transfer properties by using the following correlations: (1) Sieder-Tate: forced convection, (2) Bergles-Rohsenow: onset to nucleate boiling, (3) Bergles-Rohsenow: partially developed nucleate boiling, (4) Araki: fully developed nucleate boiling, (5) Tong-75: critical heat flux (CHF), and (6) Marshall-98: transition boiling. FILM-30 produces output files that provide the heat flux and heat transfer coefficient at the wetted perimeter as a function of temperature. To validate FILM-30, the calculated heat transfer properties were used in finite element analyses to predict internal temperatures for a water-cooled copper mockup under one-sided heating from a rastered electron beam. These predicted temperatures were compared with the measured temperatures from the author's 1994 and 1998 heat transfer experiments. There was excellent agreement between the predicted and experimentally measured temperatures, which confirmed the accuracy of FILM-30 within the experimental range of the tests. FILM-30 can accurately predict the CHF and transition boiling regimes, which is an important advantage over current heat transfer codes. Consequently, FILM-30 is ideal for predicting heat transfer properties for applications that feature high heat fluxes produced by one-sided heating.

More Details

Results and Insights on the Impact of Smoke on Digital Instrumentation and Control

Martin, Tina T.; Nowlen, Steven P.

Smoke can cause interruptions and upsets in active electronics. Because nuclear power plants are replacing analog with digital instrumentation and control systems, qualification guidelines for new systems are being reviewed for severe environments such as smoke and electromagnetic interference. Active digital systems, individual components, and active circuits have been exposed to smoke in a program sponsored by the U.S. Nuclear Regulatory Commission. The circuits and systems were all monitored during the smoke exposure, indicating any immediate effects of the smoke. The major effect of smoke has been to increase leakage currents (through circuit bridging across contacts and leads) and to cause momentary upsets and failures in digital systems. This report summarizes two previous reports and presents new results from conformal coating, memory chip, and hard drive tests. The report describes practices for mitigation of smoke damage through digital system design, fire barriers, ventilation, fire suppressants, and post fire procedures.

More Details

Directional shear force microscopy

Applied Physics Letters

Burns, Alan R.

We describe a technique, based on shear force microscopy, that allows one to detect shear forces in a chosen direction at the nanometer scale. The lateral direction of an oscillating probe tip is determined by selecting which of the four quadrants are excited on the piezo driver. The shear forces depend directly on this lateral direction if structural anisotropies are present, as confirmed with polydiacetylene monolayers. © 2001 American Institute of Physics.

More Details

Fluorescence detection of nitrogen dioxide with perylene/PMMA thin films

Sensors and Actuators, B: Chemical

Sasaki, Darryl Y.; Singh, Seema S.; Cox, Jimmy D.; Pohl, Phillip I.

Thin films of polymethylmethacrylate (PMMA) doped with perylene provide selective, robust and easily prepared optical sensor films for NO2 gas with suitable response times for materials aging applications. The materials are readily formed as 200 nm thin spin cast films on glass from chlorobenzene solution. The fluorescence emission of the films (λmax = 442 nm) is quenched upon exposure to NO2 gas through an irreversible reaction forming non-fluorescent nitroperylene. Infrared, UV-VIS and fluorescence spectroscopies confirmed the presence of the nitro adduct in the films. In other atmospheres examined, such as air and 1000 ppm concentrations of SO2, CO, Cl2 and NH3, the films exhibited no loss of fluorescence intensity over a period of days to weeks. Response curves were obtained for 1000, 100 and 10 ppm NO2 at room temperature with equilibration times varying from hours to weeks. The response curves were fit using a numerical solution to the coupled diffusion and a nonlinear chemical reaction problem assuming that the situation is reaction limiting. The forward reaction constant fitted to experimental data was kf to approximately 0.06 (ppm min)-1.

More Details

Radiation-driven shock and debris propagation down a partitioned pipe

International Journal of Impact Engineering

Furnish, Michael D.; Lawrence, R.J.; Hall, Clint A.; Asay, J.R.; Barker, D.L.; Mize, G.A.; Marsh, E.A.; Bernard, M.A.

Two experiments have been performed to measure the effects of pulsed radiation loads on the front of small tubular structures, using as an energy source the X-ray fluence produced by a Z-pinch at the Sandia National Laboratories Z Facility. The project had two major goals: to establish the feasibility of using the Z machine to study the phenomenology associated with debris generation and propagation down tubular structures with partitions; and to use the resultant experimental data to validate numerical hydrocodes (shock physics codes) so that we have confidence in their use in analyzing these types of situations. Two tubular aluminum structures (5 and 10 cm long and 1 cm inside diameter) were prepared, with aluminum partitions located at the front, halfway down the pipe, and at the rear. Interferometry (VISARs) provided multiple velocity histories for all of the partitions. In both experiments, the first barrier, which was exposed directly to the x-ray fluence, was launched into the pipe at a velocity of ∼2 km/s, accelerating to give a mean velocity of ∼ 2.6 km/s. Loss of plate integrity is inferred from the dispersed launch of the second partition at ∼1 km/s. Wall shocks propagating at 4.5 km/s were inferred. Post-test metallography showed evidence of melting and partial vaporization of the plates, and turbulent mixing with material from the walls. Calculations qualitatively agree with the observed results, but slightly overpredict debris velocity, possibly due to overestimates of total energy fluence. An application for this work is the study of techniques for line-of-sight shock and debris mitigation on high-power pulsed power facilities such as Z and its follow-on machines. © 2001 Elsevier Science Ltd. All rights reserved.

More Details

On the fluid mechanics of fires

Annual Review of Fluid Mechanics

Tieszen, Sheldon R.

Fluid mechanics research related to fire is reviewed with a focus on canonical flows, multiphysics coupling aspects, and experimental and numerical techniques. Fire is a low-speed, chemically reacting flow in which buoyancy plays an important role. Fire research has focused on two canonical flows, the reacting boundary layer and the reacting free plume. There is rich, multilateral, bidirectional coupling among fluid mechanics and scalar transport, combustion, and radiation. There is only a limited experimental fluid mechanics database for fire owing to measurement difficulties in the harsh environment and to the focus within the fire community on thermal/chemical consequences. Increasingly, computational fluid dynamics techniques are being used to provide engineering guidance on thermal/chemical consequences and to study fire phenomenology.

More Details
Results 90426–90450 of 99,299
Results 90426–90450 of 99,299