Aerodynamic force and moment measurements and flow visualization results are presented for a hypersonic vehicle configuration at Mach 8. The basic vehicle configuration is a spherically blunted 10{degree} half-angle cone with a slice parallel with the axis of the vehicle. On the slice portion of the vehicle, a flap could be attached so that deflection angles of 10{degree}, 20{degree} and 30{degree} could be obtained. All of the experimental results were obtained in the Sandia Mach 8 hypersonic wind tunnel for laminar boundary layer conditions. Flow visualization results include shear stress sensitive liquid crystal photographs, surface streak flow photographs (using liquid crystals), and spark schlieren photographs and video. The liquid crystals were used as an aid in verifying that a laminar boundary layer existed over the entire body. The surface flow photo-graphs show attached and separated flow on both the leeside of the vehicle and near the flap. A detailed uncertainty analysis was conducted to estimate the contributors to body force and moment measurement uncertainty. Comparisons are made with computational results to evaluate both the experimental and numerical results. This extensive set of high-quality experimental force and moment measurements is recommended for use in the calibration and validation of relevant computational aerodynamics codes.
Contact resistances of greater than 40 milliohms have been associated with hermetic connectors and lightning arrestor connectors (LAC) during routine testing. Empirical analysis demonstrated that the platings could be damaged within several mating cycles. The oxides that formed upon the exposed copper alloy had no significant impact upon contact resistance when the mated contacts were stationary, but effectively disrupted continuity when the mating interfaces were translated. The stiffness of the pin contact was determined to be about five times greater than the socket contact. As the pin contact engages the socket, therefore, the socket spring member deflects and the pin does not deflect. Hence, the pin contact could easily remain centered within the socket cavity in a mated condition, contacting the hemispherical spring at a localized point. Thus the only avenue for electrical conduction is between two contacting curved surfaces-the pin surface and the socket contact dimple surface. This scenario, coupled with the presence of corrosion products at the contacting interface, presents the opportunity for high contact resistances.
The author reports experimental measurements for the argon and oxygen permeability coefficients for the new EPDM material (SR793B-80) used for the environmental o-ring seals of the W88. The results allow the author to refine the argon gas analysis modeling predictions for W88 surveillance units. By comparing early surveillance results (up to four years in the field) with the modeling, the author shows that (1) up to this point in time, leakage past the seals is insignificant and (2) the argon approach should be able to inexpensively and easily monitor both integrated lifetime water leakage and the onset of any aging problems. Finally, the author provides a number of pieces of evidence indicating that aging of the SR793B-80 material will not be significant during the expected lifetime of the W88.
The image blur in a photograph is produced by the exposure of a moving object. Knowing the amount of image blur is important for recording useful data. If there is too much blur, it becomes hard to make quantitative measurements. This report discusses image blur, the parameters used to control it, and how to calculate it.
This report summarizes the purchasing and transportation activities of the Purchasing and Materials Management Organization for Fiscal Year 1992. Activities for both the New Mexico and California locations are included. Topics covered in this report include highlights for fiscal year 1992, personnel, procurements (small business procurements, disadvantaged business procurements, woman-owned business procurements, New Mexico commercial business procurements, Bay area commercial business procurements), commitments by states and foreign countries, and transportation activities. Also listed are the twenty-five commercial contractors receiving the largest dollar commitments, commercial contractors receiving commitments of $1,000 or more, integrated contractor and federal agency commitments of $1,000 or more from Sandia National Laboratories/New Mexico and California, and transportation commitments of $1,000 or more from Sandia National Laboratories/New Mexico and California.
This document is the Operations Manual for the Beneficial Uses Shipping System (BUSS) cask. These operating instructions address requirements; for loading, shipping, and unloading, supplementing general operational information found in the BUSS Safety Analysis Report for Packaging (SARP), SAND 83-0698. Use of the BUSS cask is authorized by Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) for the shipment of special form cesium chloride or strontium flouride capsules.
Two separate Tiger Team assessments were conducted at Sandia National Laboratories (SNL). The first was conducted at the California site in Livermore between April 30, 1990, and May 18, 1990. A second Tiger Team assessment was conducted at the New Mexico site in Albuquerque between April 15 and May 24, 1991. This report is volume two, change one. One purpose of this Action Plan is to provide a formal written response to each of the findings and/or concerns cited in the SNL Tiger Team assessment reports. A second purpose is to present actions planned to be conducted to eliminate deficiencies identified by the Tiger Teams. A third purpose is to consolidate (group) related findings and to identify priorities assigned to the planned actions for improved efficiency and enhanced management of the tasks. A fourth and final purpose is to merge the two original SNL Action Plans for the New Mexico [Ref. a] and California [Ref. b] sites into a single Action Plan as a major step toward managing all SNL ES&H activities more similarly. Included in this combined SNL Action Plan are descriptions of the actions to be taken by SNL to liminate all problems identified in the Tiger Teams` findings/concerns, as well as estimated costs and schedules for planned actions.
Environmental monitoring, earth-resource mapping, and military systems require broad-area imaging at high resolutions. Many times the imagery must be acquired in inclement weather or during night as well as day. Synthetic aperture radar (SAR) provides such a capability. SAR systems take advantage of the long-range propagation characteristics of radar signals and the complex information processing capability of modern digital electronics to provide high resolution imagery. SAR complements photographic and other optical imaging capabilities because of the minimum constrains on time-of-day and atmospheric conditions and because of the unique responses of terrain and cultural targets to radar frequencies. Interferometry is a method for generating a three-dimensional image of terrain. The height projection is obtained by acquiring two SAR images from two slightly differing locations. It is different from the common method of stereoscopic imaging for topography. The latter relies on differing geometric projections for triangulation to define the surface geometry whereas interferometry relies on differences in radar propagation times between the two SAR locations. This paper presents the capabilities of SAR, explains how SAR works, describes a few SAR applications, provides an overview of SAR development at Sandia, and briefly describes the motion compensation subsystem.
Given a planar straight-line graph, we find a covering triangulation whose maximum angle is as small as possible. A covering triangulation is a triangulation whose vertex set contains the input vertex set and whose edge set contains the input edge set. Such a triangulation differs from the usual Steiner triangulation in that we may not add a Steiner vertex on any input edge. Covering triangulations provide a convenient method for triangulating multiple regions sharing a common boundary, as each region can be triangulated independently. As it is possible that no finite covering triangulation is optimal in terms of its maximum angle, we propose an approximation algorithm. Our algorithm produces a covering triangulation whose maximum angle {gamma} is probably close to {gamma}{sub opt}, a lower bound on the maximum angle in any covering triangulation of the input graph. Note that we must have {gamma} {le} 3{gamma}{sub opt}, since we always have {gamma}{sub opt} {ge} {pi}/3 and no triangulation can contain an angle of size greater than {pi}. We prove something significantly stronger. We show that {pi} {minus} {gamma} {ge} ({pi} {minus} {gamma}{sub opt})/6, i.e., our {gamma} is not much closer to {pi} than is {gamma}{sub opt}. This result represents the first nontrivial bound on a covering triangulation`s maximum angle. We require a subroutine for the following problem: Given a polygon with holes, find a Steiner triangulation whose maximum angle is bounded away from {pi}. No angle larger than 8{pi}/9 is sufficient for the bound on {gamma} claimed above. The number of Steiner vertices added by our algorithm and its running time are highly dependent on the corresponding bounds for the subroutine. Given an n-vertex planar straight-line graph, we require O(n + S(n)) Steiner vertices and O(n log n + T(n)) time, where S(n) is the number of Steiner vertices added by the subroutine and T(n) is its running time for an O(n)-vertex polygon with holes.
One proven method of evading the detection of a nuclear test is to decouple the explosion with a large air-filled cavity. Past tests have shown it is possible to substantially reduce the seismic energy emanating from a nuclear explosion by as much as two, orders of magnitude. The problem is not whether it can be done; the problem is the expense involved in mining a large cavity to fully decouple any reasonable size test. It has been suggested that partial decoupling may exist so some fraction of decoupling may be attained between factors of 1 to 100. MISTY ECHO and MINERAL QUARRY are two nuclear tests which were instrumented to look at this concept. MISTY ECHO was a nuclear explosion conducted in an 11 m hemispherical cavity such that the walls were over driven and reacted in a non-linear manner. MINERAL QUARRY was a nearby tamped event that is used as a reference to compare with MISTY ECHO. The scaled cavity radius of MISTY ECHO was greater than 2m/kt[sup l/3]. Both of these tests had free-field accelerometers located within 400 m of their respective sources. Analysis of surface ground motion is inconclusive on the question of partial decoupling. This is due to the difference in medium properties that the ray paths take to the surface. The free-field configuration alleviates this concern. The analysis consists of cube-root signal MINERAL QUARRYs signal to MISTY ECHO's yield and calculating the ratio of the Fourier amplitudes of both the acceleration and the reduced displacement potentials. The results do not indicate the presence of partial decoupling. In fact, there is a coupling enhancement factor of 2.
Hazardous operations which involve the dextrous manipulation of dangerous materials in the field have, in the past, been completed by technicians. Use of humans in such hazardous operations is under increased scrutiny due to high costs and low productivity associated with providing protective clothing and environments. Remote systems are needed to accomplish many tasks such as the clean up of waste sites in which the exposure of personnel to radiation, chemical, explosive, and other hazardous constituents is unacceptable. Traditional remote manual field operations have, unfortunately, proven to have very low productivity when compared with unencumbered human operators. Recent advances in the integration of wars and computing into the control of remotely operated equipment have shown great promise for reducing the cost of remote systems while providing faster and safer remote systems. This paper discusses applications of such advances to remote field operations.
Multiple tracer techniques were used to estimate recharge rates through unsaturated alluvium beneath the Greater Confinement Disposal site, a waste disposal site located in Frenchman Flat, on the Nevada Test Site. Three tracers of soil water movement -- meteoric chloride, stable isotopes of water, and cosmogenic chlorine-36 -- yielded consistent results indicating that recharge rates were negligible for the purpose of performance assessment at the site.
This report describes work performed for the development of a fiber-optic shock position sensor used to measure the location of a shock front in the neighborhood of a nuclear explosion. Such a measurement would provide a hydrodynamic determination of nuclear yield. The original proposal was prompted by the Defense Nuclear Agency`s interest in replacing as many electrical sensors as possible with their optical counterparts for the verification of a treaty limiting the yield of a nuclear device used in underground testing. Immunity to electromagnetic pulse is the reason for the agency`s interest; unlike electrical sensors and their associated cabling, fiber-optic systems do not transmit to the outside world noise pulses from the device containing secret information.
This paper describes the connection between mechanical degradation of common cable materials in radiation and elevated temperature environments and density increases caused by the oxidation which leads to this degradation. Two techniques based on density changes are suggested as potential non-destructive evaluation (NDE) procedures which may be applicable to monitoring the mechanical condition of cable materials in power plant environments. The first technique is direct measurement of density changes, via a density gradient column, using small shavings removed from the surface of cable jackets at selected locations. The second technique is computed X-ray tomography, utilizing a portable scanning device.
We technologists generally only address risk magnitudes in our analyses, although other studies have found nineteen additional dimensions for the way the public perceives risk. These include controllability, voluntariness, catastrophic potential, and trust in the institution putting forth the risk. We and the geneml public use two different languages, and to understand what their concerns are, we need to realize that the culture surrounding nuclear weapons is completely alien to the general public. Ultimately, the acceptability of a risk is a values question, not a technical question. For most of the risk dimensions, the public would perceive no significant difference between using oralloy and plutonium. This does not mean that the suggested design change should not be proposed, only that the case for, or against, it be made comprehensively using the best information available today. The world has changed: the ending of the cold war has decreased the benefit of nuclear weapons in the minds of the public and the specter of Chernobyl has increased the perceived risks of processes that use radioactive materials. Our analyses need to incorporate the lessons pertinent to this newer world.
This is the final report for a study performed for the 1992 LDRD spaceborne SAR (Synthetic Aperture Radar) study. This report presents an overview of some of the issues that must be considered for design and implementation of a SAR on a spaceborne platform. The issues addressed in this report include: a survey of past, present, and future spaceborne SARs; pulse-repetition frequency (PRF); general image processing issues; transmitter power requirements; the ionosphere; antennas; two case studies; and an appendix with a simplified presentation on geometry and orbits.
Damage induced during electron-beam metallization results in a three-order-of-magnitude increase in the generation rate of bulk GaAs. The damage appears to be radiation induced, with low-energy electrons being the most likely from p{sup +}-i-n-i-p{sup +}-GaAs layers damaging mechanism.
This report describes the design, development, manufacturing processes, acceptance equipment, test results, and conclusions for the SA3581/MC4196 LAC program. Four development groups (Identified as Groups 1 through 3 and a Proof of Development Build) provided the evaluation criteria for the PPI/TMS production units.
An ever increasing demand for highly rugged, miniature AT strip resonators prompted the development of a resonator package for use in high-g shock applications. This package, designed and developed by Statek Corporation, is based on the package configuration currently being used by Statek for commercial devices. This report describes the design intent, component characteristics, and evaluation test results for this device.
A temperature between 400 and 500 and a pressure between 40 MPa and 160 MPa were indicated by a two-factor, three-level factorial experiment for diffusion bonding of molybdenum sheet substrates. These substrates were sputter ion plated with palladium (0.5 {mu}m) and silver (10 {mu}m) films on the mating surfaces, with the silver used as a bonding interlayer. The palladium acted as an adhesive layer between the silver film and molybdenum substrate. The silver diffusion bonds that resulted were qualitatively characterized at the interfacial regions, and bonds with no visible interface were obtained at 750OX magnification. Correlations were obtained for voids found optically at the silver/silver bonding interface and colored image maps, illustrating bond quality, produced by nondestructive ultrasonic imaging. Above 160 MPa, the bonding process produces samples with a nonuniform load distribution. These samples contained regions with gaps and well-bonded regions at the silver/silver interface, and all had macroscopic deformation of the silver films.
Salford Electrical Instruments, Ltd., and the General Electric Company`s Hirst Research Centre, under contract to the United Kingdom`s (UK) Ministry of Defence, developed a radiation-hard, leadless chip-carrier-packaged oscillator/divider. Two preproduction clocks brought to Sandia National Laboratories (SNL) by a potential SNL customer underwent mechanical and thermal environmental evaluation. Because of the subsequent failure of one device and the deteriorating condition of another device, the devices were not subjected to radiation tests. This report describes the specifics of the environmental evaluation performed on these two clocks and the postmortem analysis of one unit, which ultimately failed. Clock startup time versus temperature studies were also performed and compared to an SNL-designed clock having the same fundamental frequency.
High speed flash radiography has been used to record phenomena that occur during rapid dynamic events. The events are difficult, if not impossible, to record by other means due to the speed of the event or the obscuration associated with it. To eliminate the motion blur of objects moving at high speeds it is necessary to have extremely short exposure times. This short exposure time requires the use of high speed intensifying screens and high speed x-ray film to record the radiographic image. Technicians who use flash x-rays have to depend on recommendations from present and former flash x-ray users for film and screen selection. The film and screen industry has made many changes in the last few years. It is not uncommon to find that the particular film or screen used in the past is no longer manufactured. This paper will describe some of the films and screens that are currently used for testing. It will also describe the optimum experimental setup used to obtain the best images.
The Modal Group at Sandia National Laboratories performs a variety of tests on structures ranging from weapons systems to wind turbines. The desired number of data channels for these tests has increased significantly over the past several years. Tests requiring large numbers of data channels makes roving, accelerometers impractical and inefficient. The Modal Lab has implemented a method in which the test unit is fully instrumented before any data measurements are taken. This method uses a 16 channel data acquisition system and a mechanical switching setup to access each bank of accelerometers. A data base containing all transducer sensitivities, location numbers, and coordinate information is resident on the system enabling quick updates for each data set as it is patched into the system. Ibis method has reduced test time considerably and is easily customized to accommodate data acquisition systems with larger channel capabilities.
A new class of inorganic ion exchange materials that can separate low parts per million level concentrations of Cs{sup +} from molar concentrations of Na{sup +} has recently been developed as a result of a collaborative effort between Sandia National Laboratories and Texas A&M University. The materials, called crystalline silicotitanates, show significant potential for application to the treatment of aqueous nuclear waste solutions, especially neutralized defense wastes that contain molar concentrations of Na{sup +} in highly alkaline solutions. In experiments with alkaline solutions that simulate defense waste compositions, the crystalline silicotitanates exhibit distribution coefficients for Cs{sup +} of greater than 2,000 ml/g, and distribution coefficients greater than 10,000 for solutions adjusted to a pH between 1 and 10. Additionally, the crystalline silicotitanates were found to exhibit distribution coefficients for Pu and Sr{sup 2+} of greater than 2,000 and 100,000 respectively. Development of these materials for use in processes to treat defense waste streams is currently being pursued.
The effects of the midgap-level interface trap density and net oxide charge on the total-dose gain degradation of a bipolar transistor are separately identified. The superlinear dose dependence of the excess base current is explained.
MOS total-dose response is shown to depend strongly on transistor gate length. Simple scaling models cannot predict short-channel device response from long-channel results. Hardness assurance implications are discussed for weapon and space environments.
We have studied intrinsic free-carrier recombination in a variety of GaAs structures, including: OMVPE- and MBE-prepared GaAs/Al{sub x}Ga{sub 1-x}As double heterostructures, Na{sub 2}S passivated GaAs structures and bare GaAs structures. We find OMVPE prepared structures are superior to all of these other structures with 300 K lifetimes of {approximately} 2.5 {mu}s and negligible nonradiative interface and bulkrecombination, and thus are truly surface-free (S < 40 cm/s). Moreover, we observe systematic trends in optical properties versus growth conditions. Lastly, we find that the presence of free-exciton recombination in the low-temperature photoluminescence spectra is a necessary but not sufficient condition for optimal optical properties (i.e. long minority-carrier lifetimes).
Sandia National Laboratories (SNL) is conducting several research programs to help develop validated methods for the prediction of the ultimate pressure capacity, at elevated temperatures, of light water reactor (LWR) containment structures. To help understand the ultimate pressure of the entire containment pressure boundary, each component must be evaluated. The containment pressure boundary consists of the containment shell and many access, piping, and electrical penetrations. The focus of the current research program is to study the ultimate behavior of flexible metal bellows that are used at piping penetrations. Bellows are commonly used at piping penetrations in steel containments; however, they have very few applications in concrete (reinforced or prestressed) containments. The purpose of piping bellows is to provide a soft connection between the containment shell and the pipe are attached while maintaining the containment pressure boundary. In this way, piping loads caused by differential movement between the piping and the containment shell are minimized. SNL is conducting a test program to determine the leaktight capacity of containment bellows when subjected to postulated severe accident conditions. If the test results indicate that containment bellows could be a possible failure mode of the containment pressure boundary, then methods will be developed to predict the deformation, pressure, and temperature conditions that would likely cause a bellows failure. Results from the test program would be used to validate the prediction methods. This paper provides a description of the use and design of bellows in containment piping penetrations, the types of possible bellows loadings during a severe accident, and an overview of the test program, including available test results at the time of writing.
The Department of Energy`s Nevada Field Office has disposed of a small quantity of high activity and special case wastes using Greater Confinement Disposal facilities in Area 5 of the Nevada Test Site. Because some of these wastes are transuranic radioactive wastes, the Environmental Protection Agency standards for their disposal under 40 CFR Part 191 which requires a compliance assessment. In conducting the 40 CFR Part 191 compliance assessment, review of the Greater Confinement Disposal inventory revealed potentially land disposal restricted hazardous wastes. The regulatory options for disposing of land disposal restricted wastes consist of (1) treatment and monitoring, or (2) developing a no-migration petition. Given that the waste is already buried without treatment, a no-migration petition becomes the primary option. Based on a desire to minimize costs associated with site characterization and performance assessment, a single approach has been developed for assessing compliance with 40 CFR Part 191, DOE Order 5820.2A (which regulates low-level radioactive wastes contained in Greater Confinement Disposal facilities) and developing a no-migration petition. The approach consists of common points of compliance, common time frame for analysis, and common treatment of uncertainty. The procedure calls for conservative bias of modeling assumptions, including model input parameter distributions and adverse processes and events that can occur over the regulatory time frame, coupled with a quantitative treatment of data and parameter uncertainty. This approach provides a basis for a defensible regulatory decision. In addition, the process is iterative between modeling and site characterization activities, where the need for site characterization activities is based on a quantitative definition of the most important and uncertain parameters or assumptions.
The first portion of this paper proposes a method of fabricating a material whose modulus can be changed substantially through the application of a specified stimulus. The particular implementation presented here indirectly exploits the large deformation associated with shape memory alloys to achieve the desired modulation of stiffness. The next portion of this paper discusses a class of vibration problems for which such materials have a serious potential for vibration suppression. These are problems, such as the spinning up of rotating machinery, in which the excitation at any time lies within a narrow frequency band, and that band moves through the frequency spectrum in a predictable manner. Finally, an example problem is examined and the utility of this approach is discussed.
An element based finite control volume procedure is applied to the solution of ablation problems for 2-D axisymmetric geometries. A mesh consisting of four node quadrilateral elements was used. The nodes are allowed to move in response to the surface recession rate. The computational domain is divided into a region with a structured mesh with moving nodes and a region with an unstructured mesh with stationary nodes. The mesh is costrained to move along spines associated with the original mesh. Example problems are presented for the ablation of a realistic nose tip geometry exposed to aerodynamic heating from a uniform free stream environment.
The paper gives some of the highlights of a panel discussion on surface diffusion held Monday, November 30, 1992 at the Fall MRS Meeting in Boston, Massachusetts. Four invited speakers discussed computer modeling techniques and scanning tunneling microscopy experiments that have been used to provide new understanding of the atomistic processes that occur at surfaces. We present a summary of each of the invited talks, indicate other presentations on surface diffusion in this proceedings, and provide a transcript of the two discussion sessions.
During the past few years, methods have been developed for quantifying and analyzing common cause failures (CCFs). These methods have outpaced current data collection activities. This document discusses the collection and documentation of failure events at nuclear power plants with respect to these new CCFs methods. The report concentrates on the information necessary to improve the parameter estimates for both independent and dependent events in probabilistic risk assessments (PRAS) and alludes to the fact that the same information can be used to enhance other nuclear power plant activities. Several existing data bases are reviewed as to their adequacy for these new CCF methods, and areas where information is lacking, either because certain information is simply not required to be reported or because required information was simply not reported, are identified. Finally, data needs identified from recent PRAs are discussed.
Lighting protection systems (LPSs) for explosives handling and storage facilities have long been designed similarly to those will for more conventional facilities, but their overall effectiveness in controlling interior electromagnetic (EM) environments has still not been rigorously assessed. Frequent lightning-caused failures of a security system installed in earth-covered explosives storage structures prompted the U.& Army and Sandia National Laboratories to conduct a program to determine quantitatively the EM environments inside an explosives storage structure that is struck by lightning. These environments were measured directly during rocket-triggered lightning (RTL) tests in the summer of 1991 and were computed using linear finite-difference, time-domain (FDTD) EM solvers. The experimental and computational results were first compared in order to validate the code and were also used to construct bounds for interior environments corresponding to seven incident lightning flashes. The code insults were also used to develop simple circuit models for the EM field behavior-a process that insulted in a very simple and somewhat surprising physical interpretation of the structure`s response that has significant practical and economic implications for design, construction, and maintenance of such facilities.
A panel discussion on interface roughness was held at the Fall 1992 Materials Research Society meeting. We present a of results presented by the invited speakers on the application and interpretation of X-ray reflectivity, atomic force microscopy (AFM), scanning tunneling microscopy (STM), photoluminescence and transmission electron microscopy.
A safety system has been designed and constructed to mitigate the asphyxiation and low temperature hazards presented by the distribution and usage of cryogenic liquids in work spaces at Sandia National Laboratories. After identifying common accident scenarios, the CRYOFACS (Cryogenic Fail-Safe Control System) unit was designed, employing microprocessor technology and software that can be easily modified to accommodate varying laboratory requirements. Sensors have been incorporated in the unit for the early detection of accidental releases or overflows of cryogenic liquids. The CRYOFACS design includes control (and shutdown) of the cryogen source upon error detection, and interfaces with existing oxygen monitors, in common use at Sandia Labs, to provide comprehensive protection for both personnel and property.
The Greater Confinement Disposal (GCD) facility was established by the Nevada office of the Department of Energy (DOE) in Area 5 at the Nevada Test Site for containment of waste inappropriate for shallow land burial. Some transuranic (TRU) waste has been disposed of at the GCD facility, and compliance of this disposal system with Environmental Protection Agency (EPA) regulations 40 CFR 191 must be evaluated by performance assessment calculations. We have adopted an iterative approach where performance assessment results guide site data collection which in turn influences the parameters and models used in performance assessment. The first iteration was based upon readily available data. The first iteration indicated that the GCD facility would likely comply with 40 CFR 191 and that the downward recharge rate had a major influence on the results. As a result, a site characterization project was initiated to study recharge in Area 5 by use of three environmental tracers. This study resulted in the conclusion that recharge was extremely small, if not negligible. Thus, downward advection to the water table is no longer considered a viable release pathway, leaving upward liquid diffusion as the sole release pathway. This second performance assessment iteration refined the upward pathway models and parameters. The results of the performance assessment using these models still indicate that the GCD site is likely to comply with all sections of 40 CFR 191.
We have developed a method for generating chromate-free corrosion resistant coatings on aluminum alloys using a process procedurally similar to standard chromate conversion. These coatings provide good corrosion resistance on 6061-T6 and 1100 A1 under salt spray testing conditions. The resistance of the new coating is comparable to that of chromate conversion coatings in four point probe tests, but higher when a mercury probe technique is used. Initial tests of paint adhesion, and under paint corrosion resistance are promising. Primary advantage of this new process is that no hazardous chemicals are used or produced during the coating operation.
A method is described to characterize shocks (transient time histories) in terms of the Fourier energy spectrum and the temporal moments of the shock passed through a contiguous set of bandpass filters. This method is compared for two transient time histories with the more conventional methods of shock response spectra (SRS) and a nonstationary random characteristic.
Qualitatively different trends in postirradiation electrical response are observed in MOS devices after very long (up to 2.75-year) switched-bias bakes. A revised defect nomenclature is introduced, and implications for MOS defect models are discussed.
La{sub 2-x}Sr{sub x}CuO{sub 4+{delta}} with x = 0.01, 0.025, 0.050, 0.10 and 0.16 and excess oxygen {delta} incorporated by high-pressure O{sub 2} anneals. These compounds were examined using time-of-flight neutron diffraction data. Various models were fit by Rietveld least-squares refinement, with the maximum amount of {delta} being only of the order of 10 standard deviations. {delta} is largest for x near 0, is zero for x = 0.10 and is intermediate for x = 0.16. Only the sample with x = 0.01 is found to phase separate distinctly into a nearly stoichiometric phase with {delta} {approx} 0 and an oxygen-rich superconducting phase as the temperature is lowered. Coincidence of phase separation and Neel temperature strongly suggests that the phase separation is driven by free energy provided by long-range antiferromagnetic ordering in the nearly stoichiometric, weakly Sr-doped La{sub 2-x}Sr{sub x}CuO{sub 4}. The excess oxygen stoichiometry shows that at low values of x, hole doping is provided primarily by the excess oxygen, and is enhanced substantially by phase separation. At larger values of x, excess oxygen is no longer incorporated, and hole doping is provided by the substitution of Sr{sup +2} for La{sup +3}.
The US Nuclear Regulatory Commission (NRC) is investigating the performance of containments subject to severe accidents. This work is being performed by Sandia National Laboratories (SNL). In 1987, a 1:6-scale Reinforced Concrete Containment (RCC) model was tested to failure. The failure mode was a liner tear. As a result, a separate effects test program has been conducted to investigate liner tearing. This paper discusses the design of test specimens and the results of the testing. The post-test examination of the 1:6-scale RCC model revealed that the large tear was not an isolated event. Other small tears in similar locations were also discovered. All tears occurred near the insert-to-liner transition which is also the region of closest stud spacing. Also, all tears propagated vertically, in response to the hoop strain. Finally, all tears were adjacent to a row of studs. The tears point to a mechanism which could involve the liner/insert transition, the liner anchorage, and the material properties. The separate effects tests investigated these effects. The program included the design of three types of specimens with each simulating some features of the 1:6-scale RCC model. The specimens were instrumented using strain gages and photoelastic materials.
The problem of constructing trees given a matrix of interleaf distances is motivated by applications in computational evolutionary biology and linguistics. The general problem is to find an edge-weighted tree which most closely approximates the distance matrix. Although the construction problem is easy when the tree exactly fits the distance matrix, optimization problems under all popular criteria are either known or conjectured to be NP-complete. In this paper we consider the related problem where we are given a partial order on the pairwise distances, and wish to construct (if possible) an edge-weighted tree realizing the partial order. In particular we are interested in partial orders which arise from experiments on triples of species, which determine either a linear ordering of the three pairwise distances (called Total Order Model or TOM experiments) or only the pair(s) of minimum distance apart (called Partial Order Model or POM experiments). The POM and TOM experimental model is inspired by the model proposed by Kannan, Lawler, and Warnow for constructing trees from experiments which determine the rooted topology for any triple of species. We examine issues of construction of trees and consistency of TOM and POM experiments, where the trees may either be weighted or unweighted. Using these experiments to construct unweighted trees without nodes of degree two is motivated by a similar problem studied by Winkler, called the Discrete Metric Realization problem, which he showed to be strongly NP-hard. We have the following results: Determining consistency of a set of TOM or POM experiments is NP-Complete whether the tree is weighted or constrained to be unweighted and without degree two nodes. We can construct unweighted trees without degree two nodes from TOM experiments in optimal O(n{sup 3}) time and from POM experiments in O(n{sup 4}) time.
Semiconductor ring lasers are being developed for use as direct-waveguide-coupled sources for photonic integrated circuits. This report describes the results of our research and development of this new class of diode lasers. We have fabricated and characterized semiconductor ring lasers which operate continuous-wave at room temperature with a single-frequency output of several milliwatts. Our work has led to an increased understanding of the operating behavior of these lasers and to the development of two new types of advanced devices. The interferometric ring diode laser uses a coupled-cavity structure to improve the level of single-frequency performance. And, the unidirectional ring diode laser uses an active crossover waveguide to promote lasing in a single ring direction with up to 96% of the output emitted in the preferred lasing direction.
Results from fundamental investigations of low-temperature plasma systems were used to improve chamber-to-chamber reproducibility and reliability in commercial plasma-etching equipment. The fundamental studies were performed with a GEC RF Reference Cell, a laboratory research system designed to facilitate experimental and theoretical studies of plasma systems. Results and diagnostics from the Reference Cell studies were then applied to analysis and rectification of chamber-to-chamber variability on a commercial, multichamber, plasma reactor. Pertinent results were transferred to industry.
Compression seals are commonly used in electronic components. Because glass has such a low fracture toughness, tensile residual stresses must be kept low to avoid crackS. N. Burchett analyzed a variety of compression pin seals to identify mechanically optimal configurations when work hardened Alloy 52 conductor pins are sealed in a 304 stainless steel housing with a Kimble TM-9 glass insulator. Mechanical property tests on Alloy 52, have shown that the heat treatments encountered in a typical glass sealing cycle are capable of annealing the Alloy 52 pins, increasing ductility and lowering the yield strength. Since most seal analyses are routinely based on unannealed Alloy 52 properties, a limited study has been performed to determine the design impact of lowering the yield strength of the pins in a typical compression seal. Thermal residual stresses were computed in coaxial compression seals with annealed pins and the results then were used to reconstruct design guidelines following the procedures employed by Miller and Burchett. Annealing was found to significantly narrow the optimal design range (as defined by a dimensionless geometric parameter). The Miller-Burchett analyses which were based on very coarse finite element meshes and a 50 ksi yield strength fortuitously predicted an overly conservative design range that is a subset of the narrow design window prevalent when the yield strength is assumed to be 34 ksi. This may not remain true for lower yield strengths. The presence of pin wetting was shown to exacerbate the glass stress state. The time is right to develop a modern and enhanced set of design guidelines which could address new material systems, three dimensional geometries, and viscoelastic effects.
With ever increasing processor and memory speeds, new methods to overcome the ``I/O bottleneck`` need to be found. This is especially true for massively parallel computers that need to store and retrieve large amounts of data fast and reliably, to fully utilize the available processing power. We have designed and implemented a parallel file system, that distributes the work of transferring data to and from mass storage, across several I/O nodes and communication channels. The prototype parallel file system makes use of the existing single threaded file system of the Sandia/University of New Mexico Operating System (SUNMOS). SUNMOS is a joint project between Sandia National Laboratory and the University of New Mexico to create a small and efficient OS for Massively Parallel (MP) Multiple Instruction, Multiple Data (MIMD) machines. We chose file striping to interleave files across sixteen disks. By using source-routing of messages we were able to increase throughput beyond the maximum single channel bandwidth the default routing algorithm of the nCUBE 2 hypercube allows. We describe our implementation, the results of our experiments, and the influence this work has had on the design of the Performance-oriented, User-managed, Messaging Architecture (PUMA) operating system, the successor to SUNMOS.
An automatic phase identification system that employs a neural network approach to classifying seismic event phases is described. Extraction of feature vectors used to distinguish the different classes is explained, and the design and training of the neural networks in the system are detailed. Criteria used to evaluate the performance of the neural network approach are provided.
Satellite electronics may be subjected to a large fluence of protons from the Van Allen belt and from solar flares. To determine if unhardened electronics will survive a radiation environment, the total ionizing dose and displacement damage to the electronics must be determined. Several computer codes are available for modeling proton transport, ranging in complexity for a very-efficient straight-line approximation to general-geometry time-dependent Monte Carlo transport, with corresponding increase in computer run time. For most satellite applications, neutrons can be neglected in the analysis. However, neutrons may be important for modeling heavily shielded compartments for personnel and electronics.
This report describes the activities and results of an LDRD entitled Sensor Based Process Control. This research examined the needs of the plating industry for monitor and control capabilities with particular emphasis on water effluent from rinse baths. A personal computer-based monitor and control development system was used as a test bed.
A large-scale brine inflow test was conducted 655 m below ground surface in a cylindrical test room at the Waste Isolation Pilot Plant (WIPP). This test was the first large-scale WIPP test that allowed periodic access to a sealed, monitored excavation. The test was designed to characterize the environment within the sealed test room (Room Q) and to examine the surrounding host rock to quantify such characteristics as near-surface resistivity and permeability in the formation surrounding the room. Testing began with room boring in July 1989. Data in this report were collected from the time of test start-up through November 25, 1991. Relative humidity, barometric pressure, and temperature were measured in the sealed environment of the test room. Formation closure rates and electrical resistance of the formation close to the room surface were measured to determine the response of the host rock around Room Q. Brine was collected periodically to quantify the amount of inflow from large-scale openings. Results of the measurements are presented in a series of graphs. This report also describes the features of the test
Pore-pressure and fluid-flow tests were performed in 15 boreholes drilled into the bedded evaporites of the Salado Formation from within the Waste Isolation Pilot Plant (WIPP). The tests measured fluid flow and pore pressure within the Salado. The boreholes were drilled into the previously undisturbed host rock around a proposed cylindrical test room, Room Q, located on the west side of the facility about 655 m below ground surface. The boreholes were about 23 m deep and ranged over 27.5 m of stratigraphy. They were completed and instrumented before excavation of Room Q. Tests were conducted in isolated zones at the end of each borehole. Three groups of 5 isolated zones extend above, below, and to the north of Room Q at increasing distances from the room axis. Measurements recorded before, during, and after the mining of the circular test room provided data about borehole closure, pressure, temperature, and brine seepage into the isolated zones. The effects of the circular excavation were recorded. This data report presents the data collected from the borehole test zones between April 25, 1989 and November 25, 1991. The report also describes test development, test equipment, and borehole drilling operations.
The multiplication of a vector by a matrix is the kernel computation of many algorithms in scientific computation. A fast parallel algorithm for this calculation is therefore necessary if one is to make full use of the new generation of parallel supercomputers. This paper presents a high performance, parallel matrix-vector multiplication algorithm that is particularly well suited to hypercube multiprocessors. For an n x n matrix on p processors, the communication cost of this algorithm is O(n/{radical}p + log(p)), independent of the matrix sparsity pattern. The performance of the algorithm is demonstrated by employing it as the kernel in the well-known NAS conjugate gradient benchmark, where a run time of 6.09 seconds was observed. This is the best published performance on this benchmark achieved to date using a massively parallel supercomputer.
Radioactive spent fuel assemblies are a source of hazardous waste that will have to be dealt with in the near future. It is anticipated that the spent fuel assemblies will be transported to disposal sites in spent fuel transportation casks. In order to design a reliable and safe transportation cask, the maximum cladding temperature of the spent fuel rod arrays must be calculated. A comparison between numerical calculations using commercial thermal analysis software packages and experimental data simulating a horizontally oriented spent fuel rod array was performed. Twelve cases were analyzed using air and helium for the fill gas, with three different heat dissipation levels. The numerically predicted temperatures are higher than the experimental data for all levels of heat dissipation with air as the fill gas. The temperature differences are 4{degree}C and 23{degree}C for the low heat dissipation and high heat dissipation, respectively. The temperature predictions using helium as a fill gas are lower for the low and medium heat dissipation levels, but higher at the high heat dissipation. The temperature differences are 1{degree}C and 6{degree}C for the low and medium heat dissipation, respectively. For the high heat dissipation level, the temperature predictions are 16{degree}C higher than the experimental data. Differences between the predicted and experimental temperatures can be attributed to several factors. These factors include experimental uncertainty in the temperature and heat dissipation measurements, actual convection effects not included in the model, and axial heat flow in the experimental data. This work demonstrates that horizontally oriented spent fuel rod surface temperature predictions can be made using existing commercial software packages. This work also shows that end effects will be increasingly important as the amount of dissipated heat increases.
This bulletin discusses the following: decontamination of polluted water by using a photocatalyst to convert ultraviolet energy into electrochemical energy capable of destroying organic waste and removing toxic metals; monitoring oil spills with SAR by collecting data in digital form, processing the data, and creating digital images that are recorded for post-mission viewing and processing; revitalization of a solar industrial process heat system which uses parabolic troughs to heat water for foil production of integrated circuits; and an electronic information system, EnviroTRADE (Environmental Technologies for Remedial Actions Data Exchange) for worldwide exchange of environmental restoration and waste management information.
Sandia is a DOE multiprogram engineering and science laboratory with major facilities at Albuquerque, New Mexico, and Livermore, California, and a test range near Tonapah, Nevada. We have major research and development responsibilities for nuclear weapons, arms control, energy, the environment, economic competitiveness, and other areas of importance to the needs of the nation. Our principal mission is to support national defense policies by ensuring that the nuclear weapon stockpile meets the highest standards of safety, reliability, security, use control, and military performance. Selected unclassified technical activities and accomplishments are reported here. Topics include advanced manufacturing technologies, intelligent machines, computational simulation, sensors and instrumentation, information management, energy and environment, and weapons technology.
Increasing complexity of experiments coupled with limitations of the previously used computers required improvements in both hardware and software in the Rock Mechanics Laboratories. Increasing numbers of input channels and the need for better graphics could no longer be supplied by DATAVG, an existing software package for data acquisition and display written by D. J. Holcomb in 1983. After researching the market and trying several alternatives, no commercial program was found which met our needs. The previous version of DATAVG had the basic features needed but was tied to obsolete hardware. Memory limitations on the previously used PDP-11 made it impractical to upgrade the software further. With the advances in IBM compatible computers it is now desirable to use them as data recording platforms. With this information in mind, it was decided to write a new version of DATAVG which would take advantage of newer hardware. The new version had to support multiple graphic display windows and increased channel counts. It also had to be easier to use.
A quartz digital accelerometer has been developed which uses double ended tuning forks as the active sensing elements. The authors have demonstrated the ability of this accelerometer to be capable of acceleration measurements between {+-}150G with {+-}0.5G accuracy. They have further refined the original design and assembly processes to produce accelerometers with < 1mG stability in inertial measurement applications. This report covers the development, design, processing, assembly, and testing of these devices.
The thermomechanical effect on the exploratory ramps, drifts, and shafts as a result of high-level nuclear waste disposal is examined using a three-dimensional thermo-elastic model. The repository layout modeled is based on the use of mechanical mining of all excavations with equivalent waste emplacement areal power densities of 57 and 80 kW/acre. Predicted temperatures and stress changes for the north and south access drifts, east main drift, east-west exploratory drift, the north and south Calico Hills access ramps, the Calico Hills north-south exploratory drift, and the optional exploratory studies facility and man and materials shafts are presented for times 10, 35, 50, 100, 300, 500, 1000, 2000, 5000, and 10,000 years after the start of waste emplacement. The study indicates that the east-west exploratory drift at the repository horizon is subject to the highest thermomechanical impact because it is located closest the buried waste canisters. For most exploratory openings, the thermally induced temperatures and stresses tend to reach the maximum magnitudes at approximately 1000 years after waste emplacement.
One of the most widely recognized inadequacies of C is its low-level treatment of arrays. Arrays are not first-class objects in C; an array name in an expression almost always decays into a pointer to the underlying type. This is unfortunate, especially since an increasing number of high-performance computers are optimized for calculations involving arrays of numbers. On such machines, double[] may be regarded as an intrinsic data type comparable to double or int and quite distinct from double. This weakness of C is acknowledged in the ARM, where it is suggested that the inadequacies of the C array can be overcome in C++ by wrapping it in a class that supplies dynamic memory management bounds checking, operator syntax, and other useful features. Such ``smart arrays`` can in fact supply the same functionality as the first-class arrays found in other high-level, general-purpose programming languages. Unfortunately, they are typically expensive in both time and memory and make poor use of advanced floating-point architectures. The reasons for these difficulties are discussed in X3JI6/92-0076//WG21/N0153, ``Optimization of Expressions Involving Array Classes.`` Is there a better solution? The most obvious solution is to make arrays first-class objects and add the functionality mentioned in the previous paragraph. However, this would destroy C compatibility and significantly alter the C++ language. Major conflicts with existing practice would seem inevitable. I propose instead that a numerical array class be adopted as part of the C++ standard library. This class will have the functionality appropriate for the intrinsic arrays found on most high-performance computers, and the compilers written for these computers will be free to implement it as a built-in class. On other platforms, this class may be defined normally, and will provide users with basic array functionality without imposing an excessive burden on the implementor.
Sandia National Laboratories Occupational Medicine Center has primary responsibility for industrial medicine services, applied epidemiology, workers` compensation and sickness absence benefit management, Human Studies Board, employee assistance and health promotion. Each discipline has unique needs for data management, standard and ad hoc reporting and data analysis. The Medical Organization has established a local area network as the preferred computing environment to meet these diverse needs. Numerous applications have been implemented on the LAN supporting some 80 users.
The PANDA code is used to build a multiphase equation of state (EOS) table for iron. Separate EOS tables were first constructed for each of the individual phases. The phase diagram and multiphase EOS were then determined from the Helmholtz free energies. The model includes four solid phases ([alpha],[gamma], [delta], and [var epsilon]) and a fluid phase (including the liquid, vapor, and supercritical regions). The model gives good agreement with experimental thermophysical data, static compression data, phase boundaries, and shock-wave measurements. Contributions from thermal electronic excitation, computed from a quantum-statistical-mechanical model, were found to be very important. This EOS covers a wide range of densities (0--1000 g/cm[sup 3]) and temperatures (0--1.2[times]10[sup 7] K). It is also applicable to RHA steel. The new EOS is used in hydrocode simulations of plate impact experiments, a nylon ball impact on steel, and the shaped charge perforation of an RHA plate. The new EOS table can be accessed through the SNL-SESAME library as material number 2150.
To allow more reliable estimates to be made of the amount of water that permeates through weapon environmental seals, we have generated extensive water permeability coefficient data for numerous o-ring materials, including, weapon-specific formulations of EPDM, butyl, fluorosilicone and silicone. For each material, data were obtained at several temperatures, ranging typically from 21[degrees]C to 80[degrees]C; for selected materials, the effect of relative humidity was monitored. Two different experimental techniques were used for most of the measurements, a permeability cup method and a weight gain/loss approach using, a sensitive microbalance. Good agreement was found between the results from the two methods, adding confidence to the reliability of the measurements. Since neither of the above methods was sufficiently sensitive to measure the water permeability of the butyl material at low temperatures, a third method, based on the use of a commercial instrument which employs a water-sensitive infrared sensor, was applied under these conditions.
ETPRE is a preprocessor for the Event Progression Analysis Code EVNTRE. It reads an input file of event definitions and writes the lengthy EVNTRE code input files. ETPRE's advantage is that it eliminates the error-prone task of manually creating or revising these files since their formats are quite elaborate. The user-friendly format of ETPRE differs from the EVNTRE code format in that questions, branch references, and other event tree components are defined symbolically instead of numerically. When ETPRE is executed, these symbols are converted to their numeric equivalents and written to the output files using format defined in the EVNTRE Reference Manual. Revisions to event tree models are simplified by allowing the user to edit the symbolic format and rerun the preprocessor, since questions, branch references, and other symbols are automatically resequenced to their new values with each execution.
The FALCON Remote Laser Alignment System is used in a high radiation environment to adjust an optical assembly. The purpose of this report is to provide a description of the hardware used and to present the system configuration. Use of the system has increased the reliability and reproducibility of data as well as significantly reducing personnel radiation exposure. Based upon measured radiation dose, radiation exposure was reduced by at least a factor of two after implementing the remote alignment system.
A statistical analysis of test results on 1000 transportation and storage casks revealed the main parameters that determine the properties of DI (ductile iron, a special form of cost iron). These data were used to established a test program in which the mechanical properties (particularly fracture toughness) of 24 DI alloys were determined as a function of their microstructure. Furthermore, the analysis emphasized the effect of test specimen size and different test data evaluation methods. Results of the test program show the prominent effect of pearlite content and graphite nodule structure in the mechanical and fracture toughness characteristics of DI. As the first-order parameter, the pearlite content is responsible for the transition from linear-elastic to elastic-plastic material behavior. The structure of the graphite nodules has a strong effect on the magnitude of the material property values. On the lower shelf, materials with small, homogeneously distributed graphite nodules show higher K{sub IC}-values (matrix-oriented fracture). On the upper shelf, materials with larger graphite nodules show higher fracture toughness (graphite-oriented fracture). With smaller specimens, conservative values were calculated on the upper shelf. This is important for transportation and storage containers of radioactive materials.
The Westinghouse AP600 plant is one of a number of new reactor plant concepts being proposed by industry. One of the unique design features of the AP600 plant is the method by which the containment is cooled during a reactor accident. Through the passive containment cooling system (PCCS), the containment steel shell is passively cooled by natural convection of air and by water film evaporation from the shell exterior surface. In this study an analysis of the AP600 plant was conducted for postulated design basis accident (DBA) and severe accident scenarios using the NRC containment code CONTAIN2 with new code enhancements to model water film transport and evaporation on the exterior of the containment shell.
A 1:6-scale model of a nuclear reactor containment model was built and tested at Sandia National Laboratories as part of research program sponsored by the Nuclear Regulatory Commission to investigate containment overpressure test was terminated due to leakage from a large tear in the steel liner. A limited destructive examination of the liner and anchorage system was conducted to gain information about the failure mechanism and is described. Sections of liner were removed in areas where liner distress was evident or where large strains were indicated by instrumentation during the test. The condition of the liner, anchorage system, and concrete for each of the regions that were investigated are described. The probable cause of the observed posttest condition of the liner is discussed.
This report discusses the testing and evaluation of five commercially available interior video emotion detection (VMD) systems. Three digital VMDs and two analog VMDs were tested. The report focuses on nuisance alarm data and on intrusion detection results. Tests were conducted in a high-bay (warehouse) location and in an office.
An efficient electron-photon Monte Carlo model, taking advantage of approximate periodicity in repetitive satellite structures, is employed to benchmark a more approximate code and to study the shielding effect of a honeycomb-like structure.
This paper represents a review copy for text that is to be included in the Shock and Vibration Recommended Practice Document. This section on pyroshock is written an a general introduction to and description of the topic loading to presentation of an extensive bibliography on the subject. Pyroshock is an evolving science that needs continued focus on both achieving improvements in testing and measurement techniques and advancing instrumentation capabilities. When desired in the near future, recommended practices can be presented. Pyroshock phenomena are associated with separation systems of missiles. spacecraft, and in some cases airplanes. During launch, a rocket driven vehicle may be exposed to 19 to 30 g`s of acceleration with predominant frequencies less than 200 Hz. After launch or takeoffs sections or parts of vehicles may be separated rapidly using explosive driven release mechanisms. Separations can involve stage disconnections for spacecraft sections or payload ejections from missiles and airplanes. At separation, localized pyrotechnic induced accelerations may range from 1000 to over 100,000 g`s at frequencies much higher than 1000 Hz. These pyroshocks are characterized by high intensity, high frequency transients that decay rapidly. Pyroshock impulses have insignificant velocity changes.
A robotic precursor mission to the Lunar surface is proposed. The objective of the mission is to place six to ten 15kg micro-rovers on the planet to investigate equipment left behind during the Apollo missions and to perform other science and exploration duties. The micro-rovers are teleoperated from Earth. An equipment on the rovers is existing technology from NASA, DOE, SDIO, DoD, and industry. The mission is designed to involve several NASA centers, the National Laboratories, multiple universities and the private sector. A major long-term goal which is addressed is the educational outreach aspect of space exploration.
The development of a high mobility platform integrated with high strength manipulation is under development at Sandia National Laboratories. The mobility platform used is a High Mobility Multipurpose Wheeled Vehicle (HMMWV). Manipulation is provided by two Titan 7F Schilling manipulators integrated onboard the HMMWV. The current state of development is described and future plans are discussed.
Controlled impact experiments have been performed on concrete to determine dynamic material properties. The properties assessed include the high-strain-rate yield strength (Hugoniot elastic limit), and details of the inelastic dynamic stress versus strain response of the concrete. The latter features entail the initial void-collapse modulus, the high-stress limiting void-collapse strain, and the stress amplitude dependence of the deformational wave which loads the concrete from the elastic limit to the maximum dynamics stress state. Dynamic stress-versus-strain data are reported over the stress range of the data, from the Hugoniot elastic limit to in excess of 2 GPa. 6 figs, 4 refs, 4 tabs.
Rutherford backscattering spectrometry (RBS), elastic recoil detection (ERD), proton induced x-ray emission (PIXE) and nuclear reaction analysis (NRA) are among the most commonly used, or traditional, ion beam analysis (IBA) techniques. In this review, several adaptations of these IBA techniques are described where either the approach used in the analysis or the application area is clearly non-traditional or unusual. These analyses and/or applications are summarized in this paper.
MOSFETs historically have exhibited large 1/f noise magnitudes because of carrier-defect interactions that cause the number of channel carriers and their mobility to fluctuate. Uncertainty in the type and location of defects that lead to the observed noise have made it difficult to optimize MOSFET processing to reduce the level of 1/f noise. This has limited one`s options when designing devices or circuits (high-precision analog electronics, preamplifiers, etc.) for low-noise applications at frequencies below {approximately}10--100 kHz. We have performed detailed comparisons of the low-frequency 1/f noise of MOSFETs manufactured with radiation-hardened and non-radiation-hardened processing. We find that the same techniques which reduce the amount of MOSFET radiation-induced oxide-trap charge can also proportionally reduce the magnitude of the low-frequency 1/f noise of both unirradiated and irradiated devices. MOSFETs built in radiation-hardened device technologies show noise levels up to a factor of 10 or more lower than standard commercial MOSFETs of comparable dimensions, and our quietest MOSFETs show noise magnitudes that approach the low noise levels of JFETS.
Three dimensional (3D) seismic technology is regarded as one of the most significant improvements in oil exploration technology to come along in recent years. This report provides an assessment of the likely long-term effect on the world oil price and some possible implications for the firms and countries that participate in the oil market. The potential reduction in average finding costs expected from the use of 3D seismic methods and the potential effects these methods may have on the world oil price were estimated. Three dimensional seismic technology is likely to have a more important effect on the stability rather than on the level of oil prices. The competitive position of US oil production will not be affected by 3D seismic technology.
A programming tool has been developed to allow detailed analysis of Fortran programs for massively parallel architectures. The tool obtains counts for various arithmetic, logical, and input/output operations by data types as desired by the user. The tool operates on complete programs and recognizes user-defined and intrinsic language functions as operations that may be counted. The subset of functions recognized by the tool, STOPCNTR, can be extended by altering the input data sets. This feature facilitates analysis of programs targeted for different architectures. The basic usage and operation of the tool is described along with the more important data structures and more interesting algorithmic aspects before identifying future directions in continued development of the tool and discussing STOPCNTR`s inherent advantages and disadvantages.
Tensile properties were measured for nineteen different formulations of epoxy encapsulating materials. Formulations were of different combinations of two neat resins (Epon 828 and Epon 826, with and without CTBN modification), three fillers (ALOX, GNM and mica) and four hardeners (Z, DEA, DETDA-SA and ANH-2). Five of the formulations were tested at -55, -20, 20 and 60C, one formulation at -55, 20 and 71C; and the remaining formulations at 20C. Complete stress-strain curves are presented along with tables of tensile strength, initial modulus and Poisson`s ratio. The stress-strain responses are nonlinear and are temperature dependent. The reported data provide information for comparing the mechanical properties of encapsulants containing the suspected carcinogen Shell Z with the properties of encapsulants containing noncarcinogenic hardeners. Also, calculated shear moduli, based on measured tensile moduli and Poisson`s ratio, are in very good agreement with reported shear moduli from experimental torsional pendulum tests.
Sandia National Laboratories is currently involved in the optimization of a Plane Shock Generator Explosive Lens (PSGEL). This PSGEL component is designed to generate a planar shock wave transmitted to perform a function through a steel bulkhead without rupturing or destroying the integrity of the bulkhead. The PSGEL component consists of a detonator, explosive, brass cone and tamper housing. The purpose of the PSGEL component is to generate a plane shock wave input to 4340 steel bulkhead (wave separator) with a ferro-electric (PZT) ceramic disk attached to the steel on the surface opposite the PSGEL. The planar shock wave depolarizes the PZT 65/35 ferroelectric ceramic to produce an electrical output. Elastic, plastic I and plastic II waves with different velocities are generated in the steel bulkhead. The depolarization of the PZT ceramic is produced by the elastic wave of specific amplitude (10--20 Kilobars) and this process must be completed before (about 0. 15 microseconds) the first plastic wave arrives at the PZT ceramic. Measured particle velocity versus time profiles, using a Velocity Interferometer System for Any Reflector (VISAR) are presented for the brass and steel output free surfaces. Peak pressures are calculated from the particle velocities for the elastic, plastic I and plastic 11 waves in the steel. The work presented here investigates replacing the current 4340 steel with PH 13-8 Mo stainless steel in order to have a more corrosion resistant, weldable and more compatible material for the multi-year life of the component. Therefore, the particle velocity versus time profile data are presented comparing the 4340 steel and PH 13-8 Mo stainless steel. Additionally, in order to reduce the amount of explosive, data are presented to show that LX-13 can replace PBX-9501 explosive to produce more desirable results.
Previous studies in this laboratory have demonstrated that DMBA alters biochemical events associated with lymphocyte activation including formation of the second messenger IP{sub 3} and the release of intracellular Ca{sup 2+}. The purpose of the present studies was to evaluate the mechanisms by which DMBA induces IP{sub 3} formation and Ca{sup 2+} release by examining phosphorylation of membrane associated proteins and activation of protein tyrosine kinases lck and fyn. These studies demonstrated that exposure of HPB-ALL cells to 10{mu}M DMBA resulted in a time- and dose-dependent increase in tyrosine phosphorylation of PLC-{gamma}1 that correlated with our earlier findings of IP{sub 3} formation and Ca{sup 2+} release. These results indicate that the effects of DMBA on the PI-PLC signaling pathway are in part, the result of DMBA-induced tyrosine phosphorylation of the PLC-{gamma}1 enzyme. The mechanism of DMBA- induced tyrosine phosphorylation of PLC-{gamma}1 may be due to activation of fyn or lck kinase activity, since it was found that DMBA increased the activity of these PTKs by more than 2-fold. Therefore, these studies demonstrate that DMBA may disrupt T cell activation by stimulating PTK activation with concomitant tyrosine phosphorylation of PLC-{gamma}1, release of IP{sub 3}, and mobilization of intracellular Ca{sup 2+}.
The Natural Excitation Technique (NExT) is a method of modal testing that allows structures to be tested in their ambient environments. This report is a compilation of developments and results since 1990, and contains a new theoretical derivation of NExT, as well as a verification using analytically generated data. In addition, we compare results from NExT with conventional modal testing for a parked, vertical-axis wind turbine, and, for a rotating turbine, NExT is used to calculate the model parameters as functions of the rotation speed, since substantial damping is derived from the aeroelastic interactions during operation. Finally, we compare experimental results calculated using NExT with analytical predictions of damping using aeroelastic theory.
Characteristics of a long pulse, low-pump rate, atomic xenon (XeI) laser are described. Energy loading up to 170 mJ/cc at pulse widths between 5 and 55 ms is achieved with an electron beam in transverse geometry. The small-signal gain coefficient, loss coefficient, and saturation intensity are inferred from a modified Rigrod analysis. For pump rates between 12 and 42 W/cc the small-signal gain coefficient varies between 0.64 and 0.91%/cm, the loss coefficient varies between 0.027 and 0.088%/cm, and the saturation intensity varies between 61 and 381 W/cm{sup 2}. Laser energy as a function of pulse width and the effects of air and CO{sub 2} impurities are described. The intrinsic laser energy efficiency has a maximum at a pulse width of 10 ms corresponding to a pump rate of 1.6 W/cc. No maximum is observed in the intrinsic power efficiency, A drastic reduction of laser output power is observed for impurity concentrations of greater than {approx}0.01%. An investigation of the dominant laser wavelength in a high Q cavity indicates that the 2.6-{mu}m radiation dominates. A comparison of dominant wavelength with reactor pumped results indicates good agreement when the same cavity optics are used.
This Executive Summary presents the methodology for determining containment requirements for spent-fuel transport casks under normal and hypothetical accident conditions. Three sources of radioactive material are considered: (1) the spent fuel itself, (2) radioactive material, referred to as CRUD, attached to the outside surfaces of fuel rod cladding, and (3) residual contamination adhering to interior surfaces of the cask cavity. The methodologies for determining the concentrations of freely suspended radioactive materials within a spent-fuel transport cask for these sources are discussed in much greater detail in three companion reports: ``A Method for Determining the Spent-Fuel Contribution to Transport Cask Containment Requirements,`` ``Estimate of CRUD Contribution to Shipping Cask Containment Requirements,`` and ``A Methodology for Estimating the Residual Contamination Contribution to the Source Term in a Spent-Fuel Transport Cask.`` Examples of cask containment requirements that combine the individually determined containment requirements for the three sources are provided, and conclusions from the three companion reports to this Executive Summary are presented.
This report discusses recent efforts to characterize the flow and density nonuniformities downstream of heated screens placed in a uniform flow. The Heated Screen Test Facility (HSTF) at Sandia National Laboratories and the Lockheed Palo Alto Flow Channel (LPAFC) were used to perform experiments over wide ranges of upstream velocities and heating rates. Screens of various mesh configurations were examined, including multiple screens sequentially positioned in the flow direction. Diagnostics in these experiments included pressure manometry, hot-wire anemometry, interferometry, Hartmann wavefront slope sensing, and photorefractive schlieren photography. A model was developed to describe the downstream evolution of the flow and density nonuniformities. Equations for the spatial variation of the mean flow quantities and the fluctuation magnitudes were derived by incorporating empirical correlations into the equations of motion. Numerical solutions of these equations are in fair agreement with previous and current experimental results.
Two heliostats representing the state-of-the-art in glass-metal designs for central receiver (and photovoltaic tracking) applications were tested and evaluated at the National Solar Thermal Test Facility in Albuquerque, New Mexico from 1986 to 1992. These heliostats have collection areas of 148 and 200 m{sup 2} and represent low-cost designs for heliostats that employ glass-metal mirrors. The evaluation encompassed the performance and operational characteristics of the heliostats, and examined heliostat beam quality, the effect of elevated winds on beam quality, heliostat drives and controls, mirror module reflectance and durability, and the overall operational and maintenance characteristics of the two heliostats. A comprehensive presentation of the results of these and other tests is presented. The results are prefaced by a review of the development (in the United States) of heliostat technology.
Shipping containers for radioactive materials must be qualified to meet a thermal accident environment specified in regulations, such at Title 10, Code of Federal Regulations, Part 71. Aimed primarily at the shipping container design, this report discusses the thermal testing options available for meeting the regulatory requirements, and states the advantages and disadvantages of each approach. The principal options considered are testing with radiant heat, furnaces, and open pool fires. The report also identifies some of the facilities available and current contacts. Finally, the report makes some recommendations on the appropriate use of these different testing methods.
Within the Yucca Mountain Site Characterization Project, the design of drifts and ramps and evaluation of the impacts of thermomechanical loading of the host rock requires definition of the rock mass mechanical properties. Ramps and exploratory drifts will intersect both welded and nonwelded tuffs with varying abundance of fractures. The rock mass mechanical properties are dependent on the intact rock properties and the fracture joint characteristics. An understanding of the effects of fractures on the mechanical properties of the rock mass begins with a detailed description of the fracture spatial location and abundance, and includes a description of their physical characteristics. This report presents a description of the abundance, orientation, and physical characteristics of fractures and the Rock Quality Designation in the thermomechanical stratigraphic units at the Yucca Mountain site. Data was reviewed from existing sources and used to develop descriptions for each unit. The product of this report is a data set of the best available information on the fracture characteristics.
In this paper we consider the problem of interprocessor communication on a Completely Connected Optical Communication Parallel Computer (OCPC). The particular problem we study is that of realizing an h-relation. In this problem, each processor has at most h messages to send and at most h messages to receive. It is clear that any 1-relation can be realized in one communication step on an OCPC. However, the best known p-processor OCPC algorithm for realizing an arbitrary h-relation for h > 1 requires {Theta}(h + log p) expected communication steps. (This algorithm is due to Valiant and is based on earlier work of Anderson and Miller.) Valiant`s algorithm is optimal only for h = {Omega}(log p) and it is an open question of Gereb-Graus and Tsantilas whether there is a faster algorithm for h = o(log p). In this paper we answer this question in the affirmative by presenting a {Theta} (h + log log p) communication step algorithm that realizes an arbitrary h-relation on a p-processor OCPC. We show that if h {le} log p then the failure probability can be made as small as p{sup -{alpha}} for any positive constant {alpha}.
Strained-layer semiconductors have revolutionized modern heterostructure devices by exploiting the modification of semiconductor band structure associated with the coherent strain of lattice-mismatched heteroepitaxy. The modified band structure improves transport of holes in heterostructures and enhances the operation of semiconductor lasers. Strained-layer epitaxy also can create materials whose band gaps match wavelengths (e.g. 1.06 μm and 1.32 μm) not attainable in ternary epitaxial systems lattice matched to binary substrates. Other benefits arise from metallurgical effects of modulated strain fields on dislocations. Lattice mismatched epitaxial layers that exceed the limits of equilibrium thermodynamics will degrade under sufficient thermal processing by converting the as-grown coherent epitaxy into a network of strain-relieving dislocations. After presenting the effects of strain on band structure, we describe the stability criterion for rapid-thermal processing of strained-layer structures and the effects of exceeding the thermodynamic limits. Finally, device results are reviewed for structures that benefit from high temperature processing of strained-layer superlattices.
When an object is subjected to the flow of combustion gas at a different temperature, the thermal responses of the object and the surrounding gas become coupled. The ability to model this interaction is of primary interest in the design of components which must withstand fire environments. One approach has been to decouple the problem and treat the incident flux on the surface of the object as being emitted from a blackbody at an approximate gas temperature. By neglecting the presence of the participating media, this technique overpredicts the heat fluxes initially acting on the object surface. The main goal of this work is to quantify the differences inherent in treating the combustion media as a blackbody as opposed to a gray gas. This objective is accomplished by solving the coupled participating media radiation and conduction heat transfer problem. A transient conduction analysis of a vertical flat plate was performed using a gray gas model to provide a radiation boundary condition. A 1-D finite difference algorithm was used to solve the conduction problem at locations along the plate. The results are presented in terms of nondimensional parameters and include both average and local heat fluxes as a function of time. Early in the transient, a reduction in net heat fluxes of up to 65% was observed for the gray gas results as compared to the blackbody cases. This reduction in the initial net heat flux results in lower surface temperatures for the gray gas case. Due to the initially reduced surface temperatures, the gray gas net heat flux exceeds the net blackbody heat flux with increasing time. For radiation Biot numbers greater than 5, or values of the radiation parameter less than 10-2, the differences inherent in treating the media as a gray gas are negligible and the blackbody assumption is valid. Overall, the results clearly indicate the importance of participating media treatment in the modeling of the thermal response of objects in fires and large combustion systems.
This paper gives an estimate of the cost to produce electricity from hot-dry rock (HDR). Employment of the energy in HDR for the production of electricity requires drilling multiple wells from the surface to the hot rock, connecting the wells through hydraulic fracturing, and then circulating water through the fracture system to extract heat from the rock. The basic HDR system modeled in this paper consists of an injection well, two production wells, the fracture system (or HDR reservoir), and a binary power plant. Water is pumped into the reservoir through the injection well where it is heated and then recovered through the production wells. Upon recovery, the hot water is pumped through a heat exchanger transferring heat to the binary, or working, fluid in the power plant. The power plant is a net 5.1-MW[sub e] binary plant employing dry cooling. Make-up water is supplied by a local well. In this paper, the cost of producing electricity with the basic system is estimated as the sum of the costs of the individual parts. The effects on cost of variations to certain assumptions, as well as the sensitivity of costs to different aspects of the basic system, are also investigated.
We report our progress on the physical optics modelling of Sandia/AT&T SXPL experiments. The code is benchmarked and the 10X Schwarzchild system is being studied.
Parallel computers are becoming more powerful and more complex in response to the demand for computing power by scientists and engineers. Inevitably, new and more complex I/O systems will be developed for these systems. In particular we believe that the I/O system must provide the programmer with the ability to explicitly manage storage (despite the trend toward complex parallel file systems and caching schemes). One method of doing so is to have a partitioned secondary storage in which each processor owns a logical disk. Along with operating system enhancements which allow overheads such as buffer copying to be avoided and libraries to support optimal remapping of data, this sort of I/O system meets the needs of high performance computing.
The design-basis, defense-related, transuranic waste to be emplaced in the Waste Isolation Pilot Plant may, if sufficient H2O, nutrients, and viable microorganisms are present, generate significant quantities of gas in the repository after filling and sealing. We summarize recent results of laboratory studies of anoxic corrosion and microbial activity, the most potentially significant processes. We also discuss possible implications for the repository gas budget.