Publications

2 Results

Search results

Jump to search filters

Wafer and reticle positioning system for the Extreme Ultraviolet Lithography Engineering Test Stand

Proceedings of SPIE - The International Society for Optical Engineering

Wronosky, John B.; Smith, Tony G.; Craig, Marcus J.; Sturgis, Beverly R.; Darnold, Joel R.; Werling, David K.; Kincy, Mark A.; Tichenor, Daniel A.

This paper is an overview of the wafer and reticle positioning system of the Extreme Ultraviolet Lithography (EUVL) Engineering Test Stand (ETS). EUVL represents one of the most promising technologies for supporting the integrated circuit (IC) industry's lithography needs for critical features below 100 nm. EUVL research and development includes development of capabilities for demonstrating key EUV technologies. The ETS is under development at the EUV Virtual National Laboratory, to demonstrate EUV full-field imaging and provide data that supports production-tool development. The stages and their associated metrology operate in a vacuum environment and must meet stringent outgassing specifications. A tight tolerance is placed on the stage tracking performance to minimize image distortion and provide high position repeatability. The wafer must track the reticle with less than ±3 nm of position error and jitter must not exceed 10 nm rms. To meet these performance requirements, magnetically levitated positioning stages utilizing a system of sophisticated control electronics will be used. System modeling and experimentation have contributed to the development of the positioning system and results indicate that desired ETS performance is achievable.

More Details

Analysis of high contact resistances associated with hermetic and lightning arrestor connectors

Craig, Marcus J.

Contact resistances of greater than 40 milliohms have been associated with hermetic connectors and lightning arrestor connectors (LAC) during routine testing. Empirical analysis demonstrated that the platings could be damaged within several mating cycles. The oxides that formed upon the exposed copper alloy had no significant impact upon contact resistance when the mated contacts were stationary, but effectively disrupted continuity when the mating interfaces were translated. The stiffness of the pin contact was determined to be about five times greater than the socket contact. As the pin contact engages the socket, therefore, the socket spring member deflects and the pin does not deflect. Hence, the pin contact could easily remain centered within the socket cavity in a mated condition, contacting the hemispherical spring at a localized point. Thus the only avenue for electrical conduction is between two contacting curved surfaces-the pin surface and the socket contact dimple surface. This scenario, coupled with the presence of corrosion products at the contacting interface, presents the opportunity for high contact resistances.

More Details
2 Results
2 Results