Publications

Results 26–42 of 42

Search results

Jump to search filters

Empirical assessment of network-based Moving Target Defense approaches

Proceedings - IEEE Military Communications Conference MILCOM

Van Leeuwen, Brian P.; Stout, William M.S.; Urias, Vincent U.

Moving Target Defense (MTD) is based on the notion of controlling change across various system attributes with the objective of increasing uncertainty and complexity for attackers; the promise of MTD is that this increased uncertainty and complexity will increase the costs of attack efforts and thus prevent or limit network intrusions. As MTD increases complexity of the system for the attacker, the MTD also increases complexity and cost in the desired operation of the system. This introduced complexity may result in more difficult network troubleshooting and cause network degradation or longer network outages, and may not provide an adequate defense against an adversary in the end. In this work, the authors continue MTD assessment and evaluation, this time focusing on application performance monitoring (APM) under the umbrella of Defensive Work Factors, as well as the empirical assessment of a network-based MTD under Red Team (RT) attack. APM provides the impact of the MTD from the perspective of the user, whilst the RT element provides a means to test the defense under a series of attack steps based on the LM Cyber Kill Chain.

More Details

MTD assessment framework with cyber attack modeling

Proceedings - International Carnahan Conference on Security Technology

Van Leeuwen, Brian P.; Stout, William M.S.; Urias, Vincent U.

Moving Target Defense (MTD) has received significant focus in technical publications. The publications describe MTD approaches that periodically change some attribute of the computer network system. The attribute that is changed, in most cases, is one that an adversary attempts to gain knowledge of through reconnaissance and may use its knowledge of the attribute to exploit the system. The fundamental mechanism an MTD uses to secure the system is to change the system attributes such that the adversary never gains the knowledge and cannot execute an exploit prior to the attribute changing value. Thus, the MTD keeps the adversary from gaining the knowledge of attributes necessary to exploit the system. Most papers conduct theoretical analysis or basic simulations to assess the effectiveness of the MTD approach. More effective assessment of MTD approaches should include behavioral characteristics for both the defensive actor and the adversary; however, limited research exists on running actual attacks against an implemented system with the objective of determining the security benefits and total cost of deploying the MTD approach. This paper explores empirical assessment through experimentation of MTD approaches. The cyber-kill chain is used to characterize the actions of the adversary and identify what classes of attacks were successfully thwarted by the MTD approach and what classes of attacks could not be thwarted In this research paper, we identify the experiment environments and where experiment fidelity should be focused to evaluate the effectiveness of MTD approaches. Additionally, experimentation environments that support contemporary technologies used in MTD approaches, such as software defined networking (SDN), are also identified and discussed.

More Details

Operational cost of deploying Moving Target Defenses defensive work factors

Proceedings - IEEE Military Communications Conference MILCOM

Van Leeuwen, Brian P.; Stout, William M.S.; Urias, Vincent U.

Moving Target Defense (MTD) is the concept of controlling change across multiple information system dimensions with the objective of increasing uncertainty and complexity for attackers. Increased uncertainty and complexity will increase the costs of malicious probing and attack efforts and thus prevent or limit network intrusion. As MTD increases complexity of the system for the attacker, the MTD also increases complexity in the desired operation of the system. This introduced complexity results in more difficult network troubleshooting and can cause network degradation or longer network outages. In this research paper the authors describe the defensive work factor concept. Defensive work factors considers in detail the specific impact that the MTD approach has on computing resources and network resources. Measuring impacts on system performance along with identifying how network services (e.g., DHCP, DNS, in-place security mechanisms) are affected by the MTD approach are presented. Also included is a case study of an MTD deployment and the defensive work factor costs. An actual experiment is constructed and metrics are described for the use case.

More Details

Network Randomization and Dynamic Defense for Critical Infrastructure Systems

Chavez, Adrian R.; Martin, Mitchell T.; Hamlet, Jason H.; Stout, William M.S.; Lee, Erik L.

Critical Infrastructure control systems continue to foster predictable communication paths, static configurations, and unpatched systems that allow easy access to our nation's most critical assets. This makes them attractive targets for cyber intrusion. We seek to address these attack vectors by automatically randomizing network settings, randomizing applications on the end devices themselves, and dynamically defending these systems against active attacks. Applying these protective measures will convert control systems into moving targets that proactively defend themselves against attack. Sandia National Laboratories has led this effort by gathering operational and technical requirements from Tennessee Valley Authority (TVA) and performing research and development to create a proof-of-concept solution. Our proof-of-concept has been tested in a laboratory environment with over 300 nodes. The vision of this project is to enhance control system security by converting existing control systems into moving targets and building these security measures into future systems while meeting the unique constraints that control systems face.

More Details
Results 26–42 of 42
Results 26–42 of 42