Publications

Results 51–57 of 57

Search results

Jump to search filters

Guide to Coupled Electrostatic-Structural Analyses with Arpeggio

Porter, V.L.

Many applications in micromechanical systems (MEMS) involve electrostatically actuated parts. Arpeggio is a code for facilitating loose coupling between computational mechanics modules in a parallel computing environment. This document describes how to use Arpeggio for coupled elecromechanical analyses using examples commonly encountered in MEMS applications, namely the response of structures to loads imposed by electrostatic fields. For this type of analysis, Arpeggio is used to couple Adagio, a three dimensional finite element code for nonlinear, quasi static or implicit dynamic analysis of three-dimensional structures, with BEM, a boundary integral method code for the analysis of electrostatic fields. This guide describes the methodology used for the loose coupling and the commands the user needs in an input file to perform such an analysis. All commands related to coupled analyses are described and examples are provided.

More Details

A 3-D Vortex Code for Parachute Flow Predictions: VIPAR Version 1.0

Strickland, James H.; Homicz, Gregory F.; Porter, V.L.

This report describes a 3-D fluid mechanics code for predicting flow past bluff bodies whose surfaces can be assumed to be made up of shell elements that are simply connected. Version 1.0 of the VIPAR code (Vortex Inflation PARachute code) is described herein. This version contains several first order algorithms that we are in the process of replacing with higher order ones. These enhancements will appear in the next version of VIPAR. The present code contains a motion generator that can be used to produce a large class of rigid body motions. The present code has also been fully coupled to a structural dynamics code in which the geometry undergoes large time dependent deformations. Initial surface geometry is generated from triangular shell elements using a code such as Patran and is written into an ExodusII database file for subsequent input into VIPAR. Surface and wake variable information is output into two ExodusII files that can be post processed and viewed using software such as EnSight{trademark}.

More Details

On the Development of a Gridless Inflation Code for Parachute Simulations

Strickland, James H.; Homicz, Gregory F.; Gossler, A.A.; Wolfe, Walter P.; Porter, V.L.

In this paper the authors present the current status of an unsteady 3D parachute simulation code which is being developed at Sandia National Laboratories under the Department of Energy's Accelerated Strategic Computing Initiative (ASCI). The Vortex Inflation PARachute code (VIPAR) which embodies this effort will eventually be able to perform complete numerical simulations of ribbon parachute deployment, inflation, and steady descent. At the present time they have a working serial version of the uncoupled fluids code which can simulate unsteady 3D incompressible flows around bluff bodies made up of triangular membrane elements. A parallel version of the code has just been completed which will allow one to compute flows over complex geometries utilizing several thousand processors on one of the new DOE teraFLOP computers.

More Details
Results 51–57 of 57
Results 51–57 of 57