Publications

Results 1–100 of 168

Search results

Jump to search filters

Barriers to microalgal mass cultivation

Current Opinion in Biotechnology

Lane, Todd

Economically successful microalgal mass cultivation is dependent on overcoming several barriers that contribute to the cost of production. The severity of these barriers is dependent on the market value of the final product. These barriers prevent the commercially viable production of algal biofuels but are also faced by any producers of any algal product. General barriers include the cost of water and limits on recycling, costs and recycling of nutrients, CO2 utilization, energy costs associated with harvesting and biomass loss due to biocontamination and pond crashes. In this paper, recent advances in overcoming these barriers are discussed.

More Details

Spectroradiometric detection of competitor diatoms and the grazer Poteriochromonas in algal cultures

Algal Research

Reichardt, Thomas A.; Maes, Danae; Jensen, Travis J.; Dempster, Thomas A.; Mcgowen, John A.; Poorey, Kunal; Curtis, Deanna J.; Lane, Todd; Timlin, Jerilyn A.

To address challenges in early detection of pond pests, we have extended a spectroradiometric monitoring method, initially demonstrated for measurement of pigment optical activity and biomass, to the detection of algal competitors and grazers. The method relies upon measurement and interpretation of pond reflectance spectra spanning from the visible into the near-infrared. Reflectance spectra are acquired every 5 min with a multi-channel, fiber-coupled spectroradiometer, providing monitoring of algal pond conditions with high temporal frequency. The spectra are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed in terms of the absorption and backscatter coefficients of the cultured species, with additional terms accounting for the pigment fluorescence features and for the water-surface reflection of sunlight and skylight. With this method we demonstrate detection of diatoms and the predator Poteriochromonas in outdoor cultures of Nannochloropsis oceanica and Chlorella vulgaris, respectively. The relative strength of these signatures is compared to microscopy and sequencing analysis. Spectroradiometric detection of diatoms is then further assessed on beaker-contained mixtures of Microchloropsis salina with Phaeodactylum tricornutum, Thalassiosira weissflogii, and Thalassiosira pseudonana, respectively, providing an initial evaluation of the sensitivity and specificity of detecting pond competitors.

More Details

Chemical Profiling of Volatile Organic Compounds in the Headspace of Algal Cultures as Early Biomarkers of Algal Pond Crashes

Scientific Reports

Reese, Kristen L.; Fisher, Carolyn L.; Lane, Pamela; Jaryenneh, James D.; Jones, A.D.; Frank, Matthias; Lane, Todd

Algae ponds used in industrial biomass production are susceptible to pathogen or grazer infestation, resulting in pond crashes with high economic costs. Current methods to monitor and mitigate unhealthy ponds are hindered by a lack of early indicators that precede culture crash. We used solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS) to identify volatiles emitted from healthy and rotifer infested cultures of Microchloropsis salina. After 48 hours of algal growth, marine rotifers, Brachionus plicatilis, were added to the algae cultures and volatile organic compounds (VOC) were sampled from the headspace using SPME fibers. A GC-MS approach was used in an untargeted analysis of VOCs, followed by preliminary identification. The addition of B. plicatilis to healthy cultures of M. salina resulted in decreased algal cell numbers, relative to uninfected controls, and generated trans-β-ionone and β-cyclocitral, which were attributed to carotenoid degradation. The abundances of the carotenoid-derived VOCs increased with rotifer consumption of algae. Our results indicate that specific VOCs released by infected algae cultures may be early indicators for impending pond crashes, providing a useful tool to monitor algal biomass production and pond crash prevention.

More Details

Facile processing of Microchloropsis salina biomass for phosphate recycle

Algal Research

Lane, Todd; Huysman, Nathan D.; Lane, Pamela; Liu, Fang; Siccardi, Anthony J.; Beal, Colin M.; Davis, Ryan

Algal biomass is a proposed feedstock for sustainable production of petroleum displacing commodities. However, production of 10% of US demand for liquid transportation fuel from algae would require a 60–150% increase over current agricultural demand for phosphorus fertilizers. Without efforts to recycle major nutrients, algal biomass production can be expected to catalyze a food versus fuel crisis. We have developed a novel and simple process for efficient liberation of phosphate from algal biomass and have demonstrated recycling at both laboratory and pilot scale, of up to 70% of total cellular phosphate from osmotically-shocked but non-denatured Microchloropsis salina biomass using a range of mild incubation conditions. The phosphate released in this process is bioavailable, can support the same level of algal growth as standard nutrients, and does not contain any growth inhibitory compounds as evidenced by its ability to support multiple sequential cycles of growth and remineralization.

More Details

Bacterial communities protect the alga Microchloropsis salina from grazing by the rotifer Brachionus plicatilis

Algal Research

Lane, Todd; Fisher, Carolyn L.; Ward, Christopher S.; Lane, Pamela; Kimbrel, Jeffrey A.; Sale, Kenneth L.; Stuart, Rhona K.; Mayali, Xavier

Open algal ponds are likely to succumb to unpredictable, devastating crashes by one or several deleterious species. Developing methodology to mitigate or prevent pond crashes will increase algal biomass production, drive down costs for algae farmers, and reduce the risk involved with algae cultivation, making it more favorable for investment by entrepreneurs and biotechnology companies. Here, we show that specific algal-bacterial co-cultures grown with the green alga Microchloropsis salina prevented grazing by the marine rotifer, Brachionus plicatilis. We obtained seven algal-bacterial co-cultures from crashed rotifer cultures, maintained them in co-culture with Microchloropsis salina, and used a microalgal survival assay to determine that algae present in each co-culture were protected from rotifer grazing and culture crash. After months of routinely diluting and maintaining these seven algal-bacterial co-cultures, we repeated the assay and found the opposite result: none of the seven bacterial communities protected the microalgae from rotifer grazing. We performed 16S rRNA gene amplicon sequencing on the protective and nonprotective co-culture samples and identified substantial differences in the makeup of the bacterial communities. Protective bacterial communities consisted primarily of Alphaproteobacteria (Rhodobacteraceae) and Gammaproteobacteria (Marinobacter, Pseudomonas, Methylophaga) while nonprotective bacterial communities were less diverse and missing many putatively crucial members. We compared the seven protective communities with the seven nonprotective communities and we correlated specific bacterial amplicon sequence variants with algal protection. With these data, our future work will aim to define and develop an engineered-microbiome that can stabilize industrial Microchloropsis salina cultures by protecting against grazer-induced pond crashes.

More Details

Europa Lander Modeling Transport Capabilities Survey

Lane, Todd

The following trade study was done to answer the following task from the Sandia JPL Collaboration for Europa Lander Statement of Work: Survey SNL capabilities for modeling the transport and survivability of biological organisms in extremely hot, cold, and high radiation environments.

More Details

[Europa Lander] Decontamination Methods Trade Study

Lane, Todd; Lane, Pamela

The following trade study was done to answer the following task from the Sandia JPL Collaboration for Europa Lander Statement of Work: Perform a trade study to assess the feasibility of other sterilization/decontamination methods for reducing forward biological contamination on S/C and assess their suitability for PP applications

More Details

Changes in the structure of the microbial community associated with Nannochloropsis salina following treatments with antibiotics and bioactive compounds

Frontiers in Microbiology

Sale, Kenneth L.; Geng, Haifeng; Tran-Gyamfi, Mary; Lane, Todd; Yu, Eizadora T.

Open microalgae cultures host a myriad of bacteria, creating a complex system of interacting species that influence algal growth and health. Many algal microbiota studies have been conducted to determine the relative importance of bacterial taxa to algal culture health and physiological states, but these studies have not characterized the interspecies relationships in the microbial communities. We subjected Nanochroloropsis salina cultures to multiple chemical treatments (antibiotics and quorum sensing compounds) and obtained dense time-series data on changes to the microbial community using 16S gene amplicon metagenomic sequencing (21,029,577 reads for 23 samples) to measure microbial taxa-taxa abundance correlations. Short-term treatment with antibiotics resulted in substantially larger shifts in the microbiota structure compared to changes observed following treatment with signaling compounds and glucose. We also calculated operational taxonomic unit (OTU) associations and generated OTU correlation networks to provide an overview of possible bacterial OTU interactions. This analysis identified five major cohesive modules of microbiota with similar co-abundance profiles across different chemical treatments. The Eigengenes of OTU modules were examined for correlation with different external treatment factors. This correlation-based analysis revealed that culture age (time) and treatment types have primary effects on forming network modules and shaping the community structure. Additional network analysis detected Alteromonadeles and Alphaproteobacteria as having the highest centrality, suggesting these species are "keystone" OTUs in the microbial community. Furthermore, we illustrated that the chemical tropodithietic acid, which is secreted by several species in the Alphaproteobacteria taxon, is able to drastically change the structure of the microbiota within 3 h. Taken together, these results provide valuable insights into the structure of the microbiota associated with N. salina cultures and how these structures change in response to chemical perturbations.

More Details

Pond Crash Forensics: Presumptive identification of pond crash agents by next generation sequencing in replicate raceway mass cultures of Nannochloropsis salina

Algal Research

Lane, Todd; Lane, Pamela; Williams, Kelly P.; Wilkenfeld, Joshua S.; Solberg, Owen D.; Fuqua, Zachary B.; Cornelius, Nina G.; Gillespie, Shaunette; Samocha, Tzachi M.; Carney, Laura T.

Productivity of algal mass culture can be severely reduced by contaminating organisms. It is, therefore, important to identify contaminants, determine their effect on productivity and, ultimately, develop countermeasures against such contamination. In the present study we utilized microbiome analysis by second-generation sequencing of small subunit rRNA genes to characterize the predator and pathogen burden of open raceway cultures of Nannochloropsis salina. Samples were analyzed from replicate raceways before and after crashes. In one culture cycle, we identified two algivorous species, the rotifer Brachionus and gastrotrich Chaetonotus, the presence of which may have contributed to the loss of algal biomass. In the second culture cycle, the raceways were treated with hypochlorite in an unsuccessful attempt to interdict the crash. Our analyses were shown to be an effective strategy for the identification of the biological contaminants and the characterization of intervention strategies.

More Details

Longitudinal Analysis of Microbiota in Microalga Nannochloropsis salina Cultures

Microbial Ecology

Lane, Todd; Geng, Haifeng; Tran-Gyamfi, Mary; Sale, Kenneth L.; Yu, Eizadora T.

Large-scale open microalgae cultivation has tremendous potential to make a significant contribution to replacing petroleum-based fuels with biofuels. Open algal cultures are unavoidably inhabited with a diversity of microbes that live on, influence, and shape the fate of these ecosystems. However, there is little understanding of the resilience and stability of the microbial communities in engineered semicontinuous algal systems. To evaluate the dynamics and resilience of the microbial communities in microalgae biofuel cultures, we conducted a longitudinal study on open systems to compare the temporal profiles of the microbiota from two multigenerational algal cohorts, which include one seeded with the microbiota from an in-house culture and the other exogenously seeded with a natural-occurring consortia of bacterial species harvested from the Pacific Ocean. From these month-long, semicontinuous open microalga Nannochloropsis salina cultures, we sequenced a time-series of 46 samples, yielding 8804 operational taxonomic units derived from 9,160,076 high-quality partial 16S rRNA sequences. We provide quantitative evidence that clearly illustrates the development of microbial community is associated with microbiota ancestry. In addition, N. salina growth phases were linked with distinct changes in microbial phylotypes. Alteromonadeles dominated the community in the N. salina exponential phase whereas Alphaproteobacteria and Flavobacteriia were more prevalent in the stationary phase. We also demonstrate that the N. salina-associated microbial community in open cultures is diverse, resilient, and dynamic in response to environmental perturbations. This knowledge has general implications for developing and testing design principles of cultivated algal systems.

More Details

Growth of mono- and mixed cultures of Nannochloropsis salina and Phaeodactylum tricornutum on struvite as a nutrient source

Bioresource Technology

Davis, Ryan W.; Siccardi, Anthony J.; Huysman, Nathan D.; Wyatt, Nicholas B.; Hewson, John C.; Lane, Todd

The suitability of crude and purified struvite (MgNH4PO4), a major precipitate in wastewater streams, was investigated for renewable replacement of conventional nitrogen and phosphate resources for cultivation of microalgae. Bovine effluent wastewater stone, the source of crude struvite, was characterized for soluble N/P, trace metals, and biochemical components and compared to the purified mineral. Cultivation trials using struvite as a major nutrient source were conducted using two microalgae production strains, Nannochloropsis salina and Phaeodactylum tricornutum, in both lab and outdoor pilot-scale raceways in a variety of seasonal conditions. Both crude and purified struvite-based media were found to result in biomass productivities at least as high as established media formulations (maximum outdoor co-culture yield ~20±4gAFDW/m2/day). Analysis of nutrient uptake by the alga suggest that struvite provides increased nutrient utilization efficiency, and that crude struvite satisfies the trace metals requirement and results in increased pigment productivity for both microalgae strains.

More Details

Enhanced vector borne disease surveillance of California Culex mosquito populations reveals spatial and species-specific barriers of infection

Vandernoot, Victoria A.; Curtis, Deanna J.; Koh, Chung Y.; Brodsky, Benjamin H.; Lane, Todd

Monitoring infections in vectors such as mosquitoes,sand flies, tsetse flies, and ticks to identify human pathogens may serve as an early warning detection system to direct local government disease preventive measures. One major hurdle in detection is the ability to screen large numbers of vectors for human pathogens without the use of genotype-specific molecular techniques. Next generation sequencing (NGS) provides an unbiased platform capable of identifying known and unknown pathogens circulating within a vector population, but utilizing this technology is time-consuming and costly for vector-borne disease surveillance programs. To address this we developed cost-effective Ilumina® RNA-Seq library preparation methodologiesin conjunction with an automated computational analysis pipeline to characterize the microbial populations circulating in Culex mosquitoes (Culex quinquefasciatus, Culex quinquefasciatus/pipiens complex hybrids, and Culex tarsalis) throughout California. We assembled 20 novel and well-documented arboviruses representing members of Bunyaviridae, Flaviviridae, Ifaviridae, Mesoniviridae, Nidoviridae, Orthomyxoviridae, Parvoviridae, Reoviridae, Rhabdoviridae, Tymoviridae, as well as several unassigned viruses. In addition, we mapped mRNA species to divergent species of trypanosoma and plasmodium eukaryotic parasites and characterized the prokaryotic microbial composition to identify bacterial transcripts derived from wolbachia, clostridium, mycoplasma, fusobacterium and campylobacter bacterial species. We utilized these microbial transcriptomes present in geographically defined Culex populations to define spatial and mosquito species-specific barriers of infection. The virome and microbiome composition identified in each mosquito pool provided sufficient resolution to determine both the mosquito species and the geographic region in California where the mosquito pool originated. This data provides insight into the complexity of microbial species circulating in medically important Culex mosquitoes and their potential impact on the transmission of vector-borne human/veterinary pathogens in California.

More Details
Results 1–100 of 168
Results 1–100 of 168