Computing-as-a-Service: A Blueprint For Digital Engineering
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Lecture Notes in Networks and Systems
The DevOps movement, which aims to accelerate the continuous delivery of high-quality software, has taken a leading role in reshaping the software industry. Likewise, there is growing interest in applying DevOps tools and practices in the domains of computational science and engineering (CSE) to meet the ever-growing demand for scalable simulation and analysis. Translating insights from industry to research computing, however, remains an ongoing challenge; DevOps for science and engineering demands adaptation and innovation in those tools and practices. There is a need to better understand the challenges faced by DevOps practitioners in CSE contexts in bridging this divide. To that end, we conducted a participatory action research study to collect and analyze the experiences of DevOps practitioners at a major US national laboratory through the use of storytelling techniques. We share lessons learned and present opportunities for future investigation into DevOps practice in the CSE domain.
X-ray computed tomography is generally a primary step in characterization of defective electronic components, but is generally too slow to screen large lots of components. Super-resolution imaging approaches, in which higher-resolution data is inferred from lower-resolution images, have the potential to substantially reduce collection times for data volumes accessible via x-ray computed tomography. Here we seek to advance existing two-dimensional super-resolution approaches directly to three-dimensional computed tomography data. Multiple scan resolutions over a half order of magnitude of resolution were collected for four classes of commercial electronic components to serve as training data for a deep-learning, super-resolution network. A modular python framework for three-dimensional super-resolution of computed tomography data has been developed and trained over multiple classes of electronic components. Initial training and testing demonstrate the vast promise for these approaches, which have the potential for more than an order of magnitude reduction in collection time for electronic component screening.
Abstract not provided.
Abstract not provided.