Nonlinear Mechanics and Dynamics (NOMAD) Summer Research Institute - Kickoff Meeting
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Conference Proceedings of the Society for Experimental Mechanics Series
Contact in structures with mechanical interfaces has the ability to significantly influence the system dynamics, such that the energy dissipation and resonant frequencies vary as a function of the response amplitude. Finite element analysis is commonly used to study the physics of such problems, particularly when examining the local behavior at the interfaces. These high fidelity, nonlinear models are computationally expensive to run with time-stepping solvers due to their large mesh densities at the interface, and because of the high expense required to update the tangent operators. Hurty/Craig-Bampton substructuring and interface reduction techniques are commonly utilized to reduce computation time for jointed structures. In the past, these methods have only been applied to substructures rigidly attached to one another, resulting in a linear model. The present work explores the performance of a particular interface reduction technique (system-level characteristic constraint modes) on a nonlinear model with node-to-node contact for a benchmark structure consisting of two c-shape beams bolted together at each end.
Mechanical Systems and Signal Processing
The Hurty/Craig-Bampton method in structural dynamics represents the interior dynamics of each subcomponent in a substructured system with a truncated set of normal modes and retains all of the physical degrees of freedom at the substructure interfaces. This makes the assembly of substructures into a reduced-order system model relatively simple, but means that the reduced-order assembly will have as many interface degrees of freedom as the full model. When the full-model mesh is highly refined, and/or when the system is divided into many subcomponents, this can lead to an unacceptably large system of equations of motion. To overcome this, interface reduction methods aim to reduce the size of the Hurty/Craig-Bampton model by reducing the number of interface degrees of freedom. This research presents a survey of interface reduction methods for Hurty/Craig-Bampton models, and proposes improvements and generalizations to some of the methods. Some of these interface reductions operate on the assembled system-level matrices while others perform reduction locally by considering the uncoupled substructures. The advantages and disadvantages of these methods are highlighted and assessed through comparisons of results obtained from a variety of representative linear FE models.
Conference Proceedings of the Society for Experimental Mechanics Series
In computational structural dynamics problems, the ability to calibrate numerical models to physical test data often depends on determining the correct constraints within a structure with mechanical interfaces. These interfaces are defined as the locations within a built-up assembly where two or more disjointed structures are connected. In reality, the normal and tangential forces arising from friction and contact, respectively, are the only means of transferring loads between structures. In linear structural dynamics, a typical modeling approach is to linearize the interface using springs and dampers to connect the disjoint structures, then tune the coefficients to obtain sufficient accuracy between numerically predicted and experimentally measured results. This work explores the use of a numerical inverse method to predict the area of the contact patch located within a bolted interface by defining multi-point constraints. The presented model updating procedure assigns contact definitions (fully stuck, slipping, or no contact) in a finite element model of a jointed structure as a function of contact pressure computed from a nonlinear static analysis. The contact definitions are adjusted until the computed modes agree with experimental test data. The methodology is demonstrated on a C-shape beam system with two bolted interfaces, and the calibrated model predicts modal frequencies with <3% total error summed across the first six elastic modes.
Abstract not provided.
Abstract not provided.
The 2018 Nonlinear Mechanics and Dynamics (NOMAD) Research Institute was successfully held from June 18 to August 2, 2018. NOMAD brings together participants with diverse technical backgrounds to work in small teams to cultivate new ideas and approaches in engineering mechanics and dynamics research. NOMAD provides an opportunity for researchers -- especially early career researchers - to develop lasting collaborations that go beyond what can be established from the limited interactions at their institutions or at annual conferences. A total of 17 students came to Albuquerque, New Mexico to participate in the seven-week long program held at the Mechanical Engineering building on the University of New Mexico campus. The students collaborated on one of six research projects that were developed by various mentors from Sandia National Laboratories, University of New Mexico, and academic institutions. In addition to the research activities, the students attended weekly technical seminars, various tours, and socialized at various off-hour events including an Albuquerque Isotopes baseball game. At the end of the summer, the students gave a final technical presentation on their research findings. Many of the research discoveries made at NOMAD are published as proceedings at technical conferences and have direct alignment with the critical mission work performed at Sandia.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
A reduced order modeling capability has been developed to reduce the computational burden associated with time-domain solutions of structural dynamic models with linear viscoelastic materials. The discretized equations-of-motion produce convolution integrals resulting in a linear system with nonviscous damping forces. The challenge associated with the reduction of nonviscously damped, linear systems is the selection and computation of the appropriate modal basis to perform modal projection. The system produces a nonlinear eigenvalue problem that is challenging to solve and requires use of specialized algorithms not readily available in commercial finite element packages. This SAND report summarizes the LDRD discoveries of a reduction scheme developed for monolithic finite element models and provides preliminary investigations to extensions of the method using component mode synthesis. In addition, this report provides a background overview of structural dynamic modeling of structures with linear viscoelastic materials, and provides an overview of a new code capability in Sierra Structural Dynamics to output the system level matrices computed on multiple processors.
Abstract not provided.
Abstract not provided.
The 2017 Nonlinear Mechanics and Dynamics (NOMAD) Research Institute was successfully held from June 19 to July 28, 2017. NOMAD seeks to bring together participants with diverse technical backgrounds to work in small teams to utilize an interactive approach to cultivate new ideas and approaches in engineering . NOMAD provides an opportunity for researchers - especially early career researchers - to develop lasting collaborations that go beyond what can be established from the limited interactions at their institutions or at annual conferences. A total of 17 students from around the world came to Albuquerque, New Mexico to participate in the six - week long program held at the University of New Mexico campus. The students collaborated on one of six research projects that were developed by various mentors from Sandia National Laboratories, academia, and other government laboratories. In addition to the research activities, the students attended weekly technical seminars, toured the National Museum of Nuclear Science & History, and socialized at various off - hour events including an Albuquerque Isotopes baseball game. At the end of the summer, the students gave a final technical presentation o n their research findings that was broadcast via Skype. Many of the research discoveries made at NOMAD are published as proceedings at technical conference s and have direct alignment with the critical mission work performed at Sandia.
Abstract not provided.
Proceedings of ISMA 2018 - International Conference on Noise and Vibration Engineering and USD 2018 - International Conference on Uncertainty in Structural Dynamics
Structural dynamic models of mechanical, aerospace, and civil structures often involve connections of multiple subcomponents with rivets, bolts, press fits, or other joining processes. Recent model order reduction advances have been made for jointed structures using appropriately defined whole joint models in combination with linear substructuring techniques. A whole joint model condenses the interface nodes onto a single node with multi-point constraints resulting in drastic increases in computational speeds to predict transient responses. One drawback to this strategy is that the whole joint models are empirical and require calibration with test or high-fidelity model data. A new framework is proposed to calibrate whole joint models by computing global responses from high-fidelity finite element models and utilizing global optimization to determine the optimal joint parameters. The method matches the amplitude dependent damping and natural frequencies predicted for each vibration mode using quasi-static modal analysis.
Proceedings of ISMA 2018 - International Conference on Noise and Vibration Engineering and USD 2018 - International Conference on Uncertainty in Structural Dynamics
Structural dynamic models of mechanical, aerospace, and civil structures often involve connections of multiple subcomponents with rivets, bolts, press fits, or other joining processes. Recent model order reduction advances have been made for jointed structures using appropriately defined whole joint models in combination with linear substructuring techniques. A whole joint model condenses the interface nodes onto a single node with multi-point constraints resulting in drastic increases in computational speeds to predict transient responses. One drawback to this strategy is that the whole joint models are empirical and require calibration with test or high-fidelity model data. A new framework is proposed to calibrate whole joint models by computing global responses from high-fidelity finite element models and utilizing global optimization to determine the optimal joint parameters. The method matches the amplitude dependent damping and natural frequencies predicted for each vibration mode using quasi-static modal analysis.
Abstract not provided.
An assessment of two methodologies used at Sandia National Laboratories to model mechanical interfaces is performed on the Ministack finite element model. One method uses solid mechanics models to model contacting surfaces with Coulomb frictional contact to capture the physics. The other, termed the structural dynamics reduced order model, models the interface with a simplified whole joint model using four-parameter Iwan elements. The solid mechanics model resolves local kinematics at the interface while the simplified structural dynamics model is significantly faster to simulate. One of the current challenges to using the whole joint model is that it requires calibration to data. A novel approach is developed to calibrate the reduced structural dynamics model using data from the solid mechanics model to match the global dynamics of the system. This is achieved by calibrating to amplitude dependent frequency and damping of the system modes, which are estimated using three different approaches.
Abstract not provided.