Publications

Results 26–33 of 33

Search results

Jump to search filters

Nanometer-Scale Compositional Structure in III-V Semiconductor Heterostructures Characterized by Scanning Tunneling Microscopy

Journal of Vacuum Science Technology A

Biefeld, Robert M.

Nanometer-scale compositional structure in InAsxP1.InNYAsxPl.x-Y/InP, grown by gas-source molecular-beam epitaxy and in InAsl-xPJkAsl$b#InAs heterostructures heterostructures grown by metal-organic chemical vapor deposition has been characterized using cross-sectional scanning tunneling microscopy. InAsxP1-x alloy layers are found to contain As-rich and P-rich clusters with boundaries formed preferentially within (T 11) and (111) crystal planes. Similar compositional structure is observed within InNYAsxP1-x-Y alloy layers. Imaging of InAsl-xp@Asl#bY superlattices reveals nanometer-scale clustering within both the hAsI-.p and InAsl$bY alloy layers, with preferential alignment of compositional features in the direction. Instances are observed of compositional structure correlated across a heterojunction interface, with regions whose composition corresponds to a smaller unstrained lattice, constant relative to the surrounding alloy material appearing to propagate across the interface.

More Details

Atomic-scale properties of semiconductor heterostructures probed by scanning tunneling microscopy

Biefeld, Robert M.

The engineering of advanced semiconductor heterostructure materials and devices requires a detailed understanding of, and control over, the structure and properties of semiconductor materials and devices at the atomic to nanometer scale. Cross-sectional scanning tunneling microscopy has emerged as a unique and powerful method to characterize structural morphology and electronic properties in semiconductor epitaxial layers and device structures at these length scales. The basic experimental techniques in cross-sectional scanning tunneling microscopy are described, and some representative applications to semiconductor heterostructure characterization drawn from recent investigations in the authors laboratory are discussed. Specifically, they describe some recent studies of InP/InAsP and InAsP/InAsSb heterostructures in which nanoscale compositional clustering has been observed and analyzed.

More Details

The growth of mid-infrared lasers and AlAsxSb1 - x by MOCVD

Journal of Crystal Growth

Biefeld, Robert M.

We have grown AlSb and AlAsxSb1 - x epitaxial layers by metal-organic chemical vapor deposition (MOCVD) using trimethylamine alane or ethyldimethylamine alane, triethylantimony, and arsine. These layers were successfully doped p-or n-type using diethylzinc or tetraethyltin, respectively. We examined the growth of AlAsxSb1 - x using temperatures of 500-600°C, pressures of 65-630 Torr, V/III ratios of 1-17, and growth rates of 0.3-2.7 μm/h in a horizontal quartz reactor. We have also fabricated gain-guided, injection lasers using AlAsxSb1 - x for optical confinement and a strained InAsSb/InAs multi-quantum well active region grown using MOCVD. In pulsed mode, the laser operated up to 210 K with an emission wavelength of 3.8-3.9 μm.

More Details

The growth of mid-infrared emitting InAsSb/InAsP strained-layer superlattices using metal-organic chemical vapor deposition

Proceedings of the IEEE 24th International Symposium on Compound Semiconductors, ISCS 1997

Biefeld, Robert M.

We describe the metal-organic chemical vapor deposition of InAsSb/InAsP strained-layer superlattice (SLS) active regions for use in mid-infrared emitters. These SLSs were grown at 500°C, and 200 torr in a horizontal quartz reactor using trimethylindium, triethylantimony, AsH3, and PH3. By changing the layer thickness and composition we have prepared structures with low temperature (les/20 K) photoluminescence wavelengths ranging from 3.2 to 5.0 μm. Excellent performance was observed for an SLS light emitting diode (LED) and both optically pumped and electrically injected SLS lasers. An InAsSb/InAsP SLS injection laser emitted at 3.3 μm at 80 K with peak power of 100 mW.

More Details

The growth and doping of Al(As)Sb by metal-organic chemical vapor deposition

Biefeld, Robert M.

AlSb and AlAs{sub x}Sb{sub 1{minus}x} epitaxial films grown by metal-organic chemical vapor deposition were successfully doped p- or n-type using diethylzinc or tetraethyltin, respectively. AlSb films were grown at 500 C and 76 torr using trimethylamine or ethyldimethylamine alane and triethylantimony. The authors examined the growth of AlAsSb using temperature of 500 to 600 C, pressures of 65 to 630 torr, V/III ratios of 1--17, and growth rates of 0.3 to 2.7 {micro}m/hour in a horizontal quartz reactor. SIMS showed C and O levels below 2 {times} 10{sup 18} cm{sup {minus}3} and 6 {times} 10{sup 18} cm{sup {minus}3} respectively for undoped AlSb. Similar levels of O were found in AlAs{sub 0.16}Sb{sub 0.84} films but C levels were an order of magnitude less in undoped and Sn-doped AlAs{sub 0.16}Sb{sub 0.84} films. Hall measurements of AlAs{sub 0.16}Sb{sub 0.84} showed hole concentrations between 1 {times} 10{sup 17} cm{sup {minus}3} to 5 {times} 10{sup 18} cm{sup {minus}3} for Zn-doped material and electron concentrations in the low to mid 10{sup 18} cm{sup {minus}3} for Sn-doped material. They have grown pseudomorphic InAs/InAsSb quantum well active regions on AlAsSb cladding layers. Photoluminescence of these layers has been observed up to 300 K.

More Details

The use of novel organometallic sources in metal organic chemical vapor deposition (MOCVD)

Biefeld, Robert M.

Alternate organometallic Sb sources are being investigated to improve the characteristics of InSb grown by MOCVD. InSb grown using trimethylindium (TMIn) and trimethylantimony (TMSb) or triethylantimony (TESb) yielded similar quality materials under similar growth conditions. InSb grown using triethylindium (TEIn) and TESB under similar growth conditions yielded very poor quality n-type material. Three new organometallic Sb sources, triisopropyl-antimony (TIPSb), tris(dimethylamino)antimony (TDMASb), and tertiarybutyldimethylantimony (TBDMSb) are being investigated. Growth of InSb using TIPSb, TDMASb, or TBDMSb and TMIn was investigated over 350 to 475{degrees}C. InSb grown from TDMASb had similar properties to InSb grown from TMIn and TMSb when using a similar temperature and V/III ratio range. Growth rates of InSb using TMIn and either TIPSb or TBDMSb at temperatures {le} 425{degrees}C were proportional to both TMIn flow rate and temperature. Surface morphology of InSb grown using either TIPSb or TBDMSb was rough for growth temperatures {le} 425{degrees}C; this may be due to complex decomposition and methyl groups on surface. The InSb with the highest mobility was grown at 400{degrees}C and a V/III ratio of 3 using TIPSb. It was n-type with a carrier concentration of 2.5 {times} 10{sup 15} cm{sup {minus}3} and a mobility of 78,160 cm{sup 2}/Vs at 77 K. Both n- and p-type InSb were grown using TBDMSb with mobilities up to 67,530 and 7773 cm{sup 2}/Vs, respectively at 77 K. Mobility for InSb using either TIPSb or TBDMSb was optimized by going to lower temperatures, pressures, V/III ratios; however, surface morphology improved with higher temperature, pressure, V/III ratio. High mobility InSb with smooth surfaces at T {le} 425{degrees}C was not obtained with TIPSb or TBDMSb and TMIn.

More Details

Fermi level effects on dislocation formation in InAs{sub 1-x}Sb{sub x} grown by MOCVD

Biefeld, Robert M.

Dislocation formation in InAs{sub 1-x}Sb{sub x} buffer layers grown by metal-organic chemical vapor deposition is shown to be reproducibly enhanced by p-type doping at levels greater than or equal to the intrinsic carrier concentration at the growth temperature. To achieve a carrier concentration greater than 2 {times} 10{sup 18} cm{sup {minus}3}, the intrinsic carrier concentration of InSb at 475 C, p-type doping with diethylzinc was used. Carrier concentrations up to 6 {times} 10{sup 18} cm{sup {minus}3} were obtained. The zinc doped buffer layers have proven to be reproducibly crack free for InAs{sub 1-x}Sb{sub x} step graded buffer layers with a final composition of x = 0.12 and a strained layer superlattice with an average composition of x = 0.09. These buffer layers have been used to prepare SLS infrared photodiodes. The details of the buffer layer growth, an explanation for the observed Fermi level effect and the growth and characterization of an infrared photodiode are discussed.

More Details

The preparation of InAsSb/InSb SLS (strained-layer superlattice) and InSb photodiodes by MOCVD

Biefeld, Robert M.

Infrared absorption and photoluminescence have been demonstrated for InAs{sub 1-x}Sb{sub x}/InSb strained-layer superlattices (SLS's) in the 8--15 {eta}m region for As content less than 20%. This extended infrared activity is due to the type II heterojunction band offset in these SLS's. The preparation of the first MOCVD grown p-n junction diode was achieved by using dimethyltellurium as an in-type dopant. Several factors, such as background doping and dopant profiles affect the performance of this device. InSb diodes have been prepared using tetraethyltin. The resulting current-voltage characteristics are improved over those of diodes grown previously using dimethyltellurium. Doping levels of 8 {times} 10{sup 15} to 5 {times} 10{sup 18} cm{sup {minus}3} and mobilities of 6.7 {times} 10{sup 4} to 1.1 {times} 10{sup 4} cm{sup 2}/Vs have been measured for Sn doped InSb. SLS diode structures have been prepared using Sn and Cd as the dopants. Structures prepared with p-type buffer layers are more reproducible. 5 refs., 4 figs.

More Details
Results 26–33 of 33
Results 26–33 of 33