Publications

Results 151–175 of 227

Search results

Jump to search filters

Numerical simulations of mounding and submerging flows of shear-thinning jets impinging in a container

Journal of Non-Newtonian Fluid Mechanics

Roberts, Scott A.; Rao, Rekha R.

Continuous jets of non-Newtonian fluids impinging on a fluid surface exhibit instabilities from jet buckling and coiling at low Reynolds numbers to delayed die swell, mounding, and air entrainment at higher Reynolds numbers. Filling containers with complex fluids is an important process for many industries, where the need for high throughput requires operating at high Reynolds numbers. In this regime, air entrainment can produce a visually unappealing product, causing a major quality control issue. Just prior to the onset of air entrainment, however, there exists an ideal filling regime which we term " planar filling," as it is characterized by a relatively flat free surface that maintains its shape over time. In this paper, we create a steady-state, 2-D axisymmetric finite element model to study the transition from planar filling to the onset of air entrainment in a container filling process with generalized-Newtonian fluids. We use this model to explore the operating window for Newtonian and shear-thinning (or, more generally, deformation-rate-thinning) fluids, demonstrating that the flow behavior is characterized by a balance between inertial, viscous, and gravitational forces, as characterized by the Reynolds and Froude numbers. A scaling analysis suggests that the relevant parameters for calculating these dimensionless numbers are located where the jet impacts the liquid surface, and simulations show that the transition from planar filling to air entrainment often occurs when Re~O(10). We found that the bottom and side surfaces of the container drastically influence this transition to entrainment, stabilizing the flow. © 2011 Elsevier B.V.

More Details

Finite element analysis of multilayer coextrusion

Rao, Rekha R.; Mondy, L.A.; Schunk, Randy; Hopkins, Matthew M.

Multilayer coextrusion has become a popular commercial process for producing complex polymeric products from soda bottles to reflective coatings. A numerical model of a multilayer coextrusion process is developed based on a finite element discretization and two different free-surface methods, an arbitrary-Lagrangian-Eulerian (ALE) moving mesh implementation and an Eulerian level set method, to understand the moving boundary problem associated with the polymer-polymer interface. The goal of this work is to have a numerical capability suitable for optimizing and troubleshooting the coextrusion process, circumventing flow instabilities such as ribbing and barring, and reducing variability in layer thickness. Though these instabilities can be both viscous and elastic in nature, for this work a generalized Newtonian description of the fluid is used. Models of varying degrees of complexity are investigated including stability analysis and direct three-dimensional finite element free surface approaches. The results of this work show how critical modeling can be to reduce build test cycles, improve material choices, and guide mold design.

More Details

Thermodynamic modeling of liquid-liquid extraction (LLE) for the system TBP-HNO3-UO2(NO3)2-H 2O-diluent

13th International High-Level Radioactive Waste Management Conference 2011, IHLRWMC 2011

Jove Colon, Carlos F.; Moffat, Harry K.; Rao, Rekha R.

The PUREX process is one of the most widely adopted approaches of industrial-scale liquid-liquid extraction (LLE) methods for the separation and recovery of U and Pu from dissolved used nuclear fuel. This paper documents the application of chemical equilibrium approaches to the modeling of LLE for the PUREX process at 25°C. In this work, we focus on modeling the extraction of HNO3 and UO2(NO3)2 by the non-electrolyte organic liquid phase Tri-n-butyl Phosphate (TBP) plus a diluent (Amsco 125-82). Six chemical reactions representing the equilibria between the concentrated HNO3-UO2(NO3)2 electrolyte and TBP-diluent organic phase is sufficient to accurately generate the extraction isotherms for the extracted components for a wide range of TBP and acid concentrations in the non-electrolyte and electrolyte phases, respectively. The Pitzer approach is used to compute the activity coefficients of the HNO3 electrolyte phase. No activity coefficient model is adopted for TBP organic complexes where these were assigned unity values. Even with this assumption, the predicted isotherms are in very good agreement with the experimental data and such result serves as a preamble to extend this modeling approach to more compositionally complex systems relevant to LLE of radionuclides.

More Details

Mesoscale to plant-scale models of nuclear waste reprocessing

Rao, Rekha R.; Pawlowski, Roger P.; Brotherton, Christopher M.; Cipiti, Benjamin B.; Domino, Stefan P.; Jove Colon, Carlos F.; Moffat, Harry K.; Nemer, Martin N.; Noble, David R.; O'Hern, Timothy J.

Imported oil exacerabates our trade deficit and funds anti-American regimes. Nuclear Energy (NE) is a demonstrated technology with high efficiency. NE's two biggest political detriments are possible accidents and nuclear waste disposal. For NE policy, proliferation is the biggest obstacle. Nuclear waste can be reduced through reprocessing, where fuel rods are separated into various streams, some of which can be reused in reactors. Current process developed in the 1950s is dirty and expensive, U/Pu separation is the most critical. Fuel rods are sheared and dissolved in acid to extract fissile material in a centrifugal contactor. Plants have many contacts in series with other separations. We have taken a science and simulation-based approach to develop a modern reprocessing plant. Models of reprocessing plants are needed to support nuclear materials accountancy, nonproliferation, plant design, and plant scale-up.

More Details

Mounding of a non-Newtonian jet impinging on a solid substrate

Rao, Rekha R.; Grillet, Anne M.; Schunk, Randy

When a fluid jet impinges on a solid substrate, a variety of behaviors may occur around the impact region. One example is mounding, where the fluid enters the impact region faster than it can flow away, forming a mound of fluid above the main surface. For some operating conditions, this mound can destabilize and buckle, entraining air in the mound. Other behaviors include submerging flow, where the jet impinges into an otherwise steady pool of liquid, entraining a thin air layer as it enters the pool. This impact region is one of very high shear rates and as such, complex fluids behave very differently than do Newtonian fluids. In this work, we attempt to characterize this range of behavior for Newtonian and non-Newtonian fluids using dimensionless parameters. We model the fluid as a modified Bingham-Carreau-Yasuda fluid, which exhibits the full range of pseudoplastic flow properties throughout the impact region. Additionally, we study viscoelastic effects through the use of the Giesekus model. Both 2-D and 3-D numerical simulations are performed using a variety of finite element method techniques for tracking the jet interface, including Arbitrary Lagrangian Eulerian (ALE), diffuse level sets, and a conformal decomposition finite element method (CDFEM). The presence of shear-thinning characteristics drastically reduces unstable mounding behavior, yet can lead to air entrainment through the submerging flow regime. We construct an operating map to understand for what flow parameters mounding and submerging flows will occur, and how the fluid rheology affects these behaviors. This study has many implications in high-speed industrial bottle filling applications.

More Details
Results 151–175 of 227
Results 151–175 of 227