Polyurethane Foam Expansion Polymerization and Bubble Pressurization
Abstract not provided.
Abstract not provided.
Polyurethane is a complex multiphase material that evolves from a viscous liquid to a system of percolating bubbles, which are created via a CO2 generating reaction. The continuous phase polymerizes to a solid during the foaming process generating heat. Foams introduced into a mold increase their volume up to tenfold, and the dynamics of the expansion process may lead to voids and will produce gradients in density and degree of polymerization. These inhomogeneities can lead to structural stability issues upon aging. For instance, structural components in weapon systems have been shown to change shape as they age depending on their molding history, which can threaten critical tolerances. The purpose of this project is to develop a Cradle-to-Grave multiphysics model, which allows us to predict the material properties of foam from its birth through aging in the stockpile, where its dimensional stability is important.
The recent boom in the oil and natural gas industry of hydraulic fracture of source rocks has caused a new era in oil and gas production worldwide. However, there are many parts of this process that are poorly understood and thus hard to control. One of the few things that can be controlled is the process of injection to create the fractures in the subsurface and the subsequent injection of proppants to maintain the permeability of the fractured formation, allowing hydrocarbons to be extracted. The goal of this work was to better understand the injection process and resulting proppant distribution in the fracture through a combination of lab-scale experiments and computational models.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
50th US Rock Mechanics / Geomechanics Symposium 2016
Performing experiments in the laboratory that mimic conditions in the field is challenging. In an attempt to understand hydraulic fracture in the field, and provide laboratory flow results for model verification, an effort to duplicate the typical fracture pattern for long horizontal wells has been made. The typical "disks on a string" fracture formation is caused by properly orienting the long horizontal well such that it is parallel to the minimum principal stress direction, then fracturing the rock. In order to replicate this feature in the laboratory with a traditional cylindrical specimen the test must be performed under extensile stress conditions and the specimen must have been cored parallel to bedding in order to avoid failure along a bedding plane, and replicate bedding orientation in the field. Testing has shown that it is possible to form failure features of this type in the laboratory. A novel method for jacketing is employed to allow fluid to flow out of the fracture and leave the specimen without risking the integrity of the jacket; this allows proppant to be injected into the fracture, simulating loss of fracturing fluids to the formation, and allowing a solid proppant pack to be developed.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
A Galerkin/least-squares stabilization technique is applied to a discrete Elastic Viscous Stress Splitting formulation of for viscoelastic flow. From this, a possible viscoelastic stabilization method is proposed. This method is tested with the flow of an Oldroyd-B fluid past a rigid cylinder, where it is found to produce inaccurate drag coefficients. Furthermore, it fails for relatively low Weissenberg number indicating it is not suited for use as a general algorithm. In addition, a decoupled approach is used as a way separating the constitutive equation from the rest of the system. A Pressure Poisson equation is used when the velocity and pressure are sought to be decoupled, but this fails to produce a solution when inflow/outflow boundaries are considered. However, a coupled pressure-velocity equation with a decoupled constitutive equation is successful for the flow past a rigid cylinder and seems to be suitable as a general-use algorithm.
We are studying PMDI polyurethane with a fast catalyst, such that filling and polymerization occur simultaneously. The foam is over-packed to tw ice or more of its free rise density to reach the density of interest. Our approach is to co mbine model development closely with experiments to discover new physics, to parameterize models and to validate the models once they have been developed. The model must be able to repres ent the expansion, filling, curing, and final foam properties. PMDI is chemically blown foam, wh ere carbon dioxide is pr oduced via the reaction of water and isocyanate. The isocyanate also re acts with polyol in a competing reaction, which produces the polymer. A new kinetic model is developed and implemented, which follows a simplified mathematical formalism that decouple s these two reactions. The model predicts the polymerization reaction via condensation chemis try, where vitrification and glass transition temperature evolution must be included to correctly predict this quantity. The foam gas generation kinetics are determined by tracking the molar concentration of both water and carbon dioxide. Understanding the therma l history and loads on the foam due to exothermicity and oven heating is very important to the results, since the kinetics and ma terial properties are all very sensitive to temperature. The conservation eq uations, including the e quations of motion, an energy balance, and thr ee rate equations are solved via a stabilized finite element method. We assume generalized-Newtonian rheology that is dependent on the cure, gas fraction, and temperature. The conservation equations are comb ined with a level set method to determine the location of the free surface over time. Results from the model are compared to experimental flow visualization data and post-te st CT data for the density. Seve ral geometries are investigated including a mock encapsulation part, two configur ations of a mock stru ctural part, and a bar geometry to specifically test the density model. We have found that the model predicts both average density and filling profiles well. However, it under predicts density gradients, especially in the gravity direction. Thoughts on m odel improvements are also discussed.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.