Exploring the use of Kokkos in HOMME to achieve performance on multiple architectures
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
A three year LDRD was undertaken to look at the feasibility of using magnetic sensing to determine flows within sealed vessels at high temperatures and pressures. Uniqueness proofs were developed for tracking of single magnetic particles with multiple sensors. Experiments were shown to be able to track up to 3 dipole particles undergoing rigid-body rotational motion. Temperature was wirelessly monitored using magnetic particles in static and predictable motions. Finally high-speed vibrational motion was tracked using magnetic particles. Ideas for future work include using small particles for measuring vorticity and better calibration methods for tracking multiple particles.
Abstract not provided.
IEEE Transactions on Magnetics
Remote temperature sensing is essential for applications in enclosed vessels, where feedthroughs or optical access points are not possible. A unique sensing method for measuring the temperature of multiple closely spaced points is proposed using permanent magnets and several three-axis magnetic field sensors. The magnetic field theory for multiple magnets is discussed and a solution technique is presented. Experimental calibration procedures, solution inversion considerations, and methods for optimizing the magnet orientations are described in order to obtain low-noise temperature estimates. The experimental setup and the properties of permanent magnets are shown. Finally, experiments were conducted to determine the temperature of nine magnets in different configurations over a temperature range of 5 °C to 60 °C and for a sensor-to-magnet distance of up to 35 mm. To show the possible applications of this sensing system for measuring temperatures through metal walls, additional experiments were conducted inside an opaque 304 stainless steel cylinder.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The Next Generation Global Atmosphere Model LDRD project developed a suite of atmosphere models: a shallow water model, an x-z hydrostatic model, and a 3D hydrostatic model, by using Albany, a finite element code. Albany provides access to a large suite of leading-edge Sandia high-performance computing technologies enabled by Trilinos, Dakota, and Sierra. The next-generation capabilities most relevant to a global atmosphere model are performance portability and embedded uncertainty quantification (UQ). Performance portability is the capability for a single code base to run efficiently on diverse set of advanced computing architectures, such as multi-core threading or GPUs. Embedded UQ refers to simulation algorithms that have been modified to aid in the quantifying of uncertainties. In our case, this means running multiple samples for an ensemble concurrently, and reaping certain performance benefits. We demonstrate the effectiveness of these approaches here as a prelude to introducing them into ACME.
ASME 2016 Dynamic Systems and Control Conference, DSCC 2016
Temperature monitoring is essential in automation, mechatronics, robotics and other dynamic systems. Wireless methods which can sense multiple temperatures at the same time without the use of cables or slip-rings can enable many new applications. A novel method utilizing small permanent magnets is presented for wirelessly measuring the temperature of multiple points moving in repeatable motions. The technique utilizes linear least squares inversion to separate the magnetic field contributions of each magnet as it changes temperature. The experimental setup and calibration methods are discussed. Initial experiments show that temperatures from 5 to 50 °C can be accurately tracked for three neodymium iron boron magnets in a stationary configuration and while traversing in arbitrary, repeatable trajectories. This work presents a new sensing capability that can be extended to tracking multiple temperatures inside opaque vessels, on rotating bearings, within batteries, or at the tip of complex endeffectors.
Abstract not provided.
Abstract not provided.
Proposed for publication in Journal of Computational Physics.
Abstract not provided.
Proposed for publication in Journal of Physical Oceanography.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Int. J. High Performance Computing and applications.
Abstract not provided.