Publications

Results 26–35 of 35

Search results

Jump to search filters

COYOTE : a finite element computer program for nonlinear heat conduction problems. Part I, theoretical background

Gartling, David K.; Hogan, Roy E.; Glass, Micheal W.

The need for the engineering analysis of systems in which the transport of thermal energy occurs primarily through a conduction process is a common situation. For all but the simplest geometries and boundary conditions, analytic solutions to heat conduction problems are unavailable, thus forcing the analyst to call upon some type of approximate numerical procedure. A wide variety of numerical packages currently exist for such applications, ranging in sophistication from the large, general purpose, commercial codes, such as COMSOL, COSMOSWorks, ABAQUS and TSS to codes written by individuals for specific problem applications. The original purpose for developing the finite element code described here, COYOTE, was to bridge the gap between the complex commercial codes and the more simplistic, individual application programs. COYOTE was designed to treat most of the standard conduction problems of interest with a user-oriented input structure and format that was easily learned and remembered. Because of its architecture, the code has also proved useful for research in numerical algorithms and development of thermal analysis capabilities. This general philosophy has been retained in the current version of the program, COYOTE, Version 5.0, though the capabilities of the code have been significantly expanded. A major change in the code is its availability on parallel computer architectures and the increase in problem complexity and size that this implies. The present document describes the theoretical and numerical background for the COYOTE program. This volume is intended as a background document for the user's manual. Potential users of COYOTE are encouraged to become familiar with the present report and the simple example analyses reported in before using the program. The theoretical and numerical background for the finite element computer program, COYOTE, is presented in detail. COYOTE is designed for the multi-dimensional analysis of nonlinear heat conduction problems. A general description of the boundary value problems treated by the program is presented. The finite element formulation and the associated numerical methods used in COYOTE are also outlined. Instructions for use of the code are documented in SAND2010-0714.

More Details

ACME algorithms for contact in a multiphysics environment API version 2.2

Brown, Kevin H.; Glass, Micheal W.; Gullerud, Arne S.; Heinstein, Martin W.; Jones, Reese E.

An effort is underway at Sandia National Laboratories to develop a library of algorithms to search for potential interactions between surfaces represented by analytic and discretized topological entities. This effort is also developing algorithms to determine forces due to these interactions for transient dynamics applications. This document describes the Application Programming Interface (API) for the ACME (Algorithms for Contact in a Multiphysics Environment) library.

More Details

ACME: Algorithms for Contact in a Multiphysics Environment API Version 1.3

Brown, Kevin H.; Brown, Kevin H.; Voth, Thomas E.; Glass, Micheal W.; Gullerud, Arne S.; Heinstein, Martin W.; Jones, Reese E.

An effort is underway at Sandia National Laboratories to develop a library of algorithms to search for potential interactions between surfaces represented by analytic and discretized topological entities. This effort is also developing algorithms to determine forces due to these interactions for transient dynamics applications. This document describes the Application Programming Interface (API) for the ACME (Algorithms for Contact in a Multiphysics Environment) library.

More Details

ACME - Algorithms for Contact in a Multiphysics Environment API Version 1.0

Brown, Kevin H.; Summers, Randall M.; Glass, Micheal W.; Gullerud, Arne S.; Heinstein, Martin W.; Jones, Reese E.

An effort is underway at Sandia National Laboratories to develop a library of algorithms to search for potential interactions between surfaces represented by analytic and discretized topological entities. This effort is also developing algorithms to determine forces due to these interactions for transient dynamics applications. This document describes the Application Programming Interface (API) for the ACME (Algorithms for Contact in a Multiphysics Environment) library.

More Details

ACME Algorithms for Contact in a Multiphysics Environment API Version 0.3a

Brown, Kevin H.; Glass, Micheal W.; Gullerud, Arne S.; Heinstein, Martin W.; Jones, Reese E.; Summers, Randall M.

An effort is underway at Sandia National Laboratories to develop a library of algorithms to search for potential interactions between surfaces represented by analytic and discretized topological entities. This effort is also developing algorithms to determine forces due to these interactions for transient dynamics applications. This document describes the Application Programming Interface (API) for the ACME (Algorithms for Contact in a Multiphysics Environment) library.

More Details

CHAPARRAL: A library for solving large enclosure radiation heat transfer problems

Glass, Micheal W.

Large, three-dimensional enclosure radiation beat transfer problems place a heavy demand on computing resources such as computational cycles, memory requirements, disk I/O, and disk space usage. This is primarily due to the computational and memory requirements associated with the view factor calculation and subsequent access of the view factor matrix during solution of the radiosity matrix equation. This is a fundamental problem that constrains Sandia`s current modeling capabilities. Reducing the computational and memory requirements for calculating and manipulating view factors would enable an analyst to increase the level of detail at which a body could be modeled and would have a major impact on many programs at Sandia such as weapon and transportation safety programs, component survivability programs, energy programs, and material processing programs. CHAPARRAL is a library package written to address these problems and is specifically tailored towards the efficient solution of extremely large three-dimensional enclosure radiation heat transfer problems.

More Details

Flow visualization for Lagrangian particle methods

Glass, Micheal W.

In particle methods, each particle represents a finite region over which there is a distribution of the field quantity of interest. The field value at any point is calculated by summing the distribution functions for all the particles. This summation procedure does not require the use of any connectivities to generate continuous fields. Various AVS modules and networks have been developed that enable us to visualize the results from particle methods. This will be demonstrated by visualizing a numerical simulation of a rising, chaotic bubble. In this fluid dynamics simulation, each particle represents a region with a specified vorticity distribution.

More Details

A perspective on AVS in an engineering sciences environment

Glass, Micheal W.

At Sandia National Laboratories, the Engineering Sciences Center has made a commitment to integrate AVS into our computing environment as the primary tool for scientific visualization. AVS will be used on an everyday basis by a broad spectrum of users ranging from the occasional computer user to AVS module developers. Additionally, AVS will be used to visualize structured grid, unstructured grid, gridless, 1D, 2D, 3D, steady-state, transient, computational, and experimental data. The following is one user's perspective on how AVS meets this task. Several examples of how AVS is currently being utilized will be given along with some future directions.

More Details

Far-field dispersal modeling for fuel-air-explosive devices

Glass, Micheal W.

A computer model for simulating the explosive dispersal of a fuel agent in the far-field regime is described and is applied to a wide variety of initial conditions to judge their effect upon the resulting fuel/air cloud. This work was directed toward modeling the dispersal process associated with Fuel-Air-Explosives devices. The far-field dispersal regime is taken to be that time after the initial burster charge detonation in which the shock forces no longer dominate the flow field and initial canister and fuel mass breakup has occurred. The model was applied to a low vapor pressure fuel, a high vapor pressure fuel and a solid fuel. A strong dependence of the final cloud characteristics upon the initial droplet size distribution was demonstrated. The predicted fuel-air clouds were highly non-uniform in concentration. 18 refs., 86 figs., 4 tabs.

More Details
Results 26–35 of 35
Results 26–35 of 35