Publications

Results 201–250 of 250

Search results

Jump to search filters

Polynorbornene as a low loss matrix material for IR metamaterial applications

Rasberry, Roger D.; Ginn, James C.; Hines, Paul H.; Arrington, Christian L.; Sinclair, Michael B.; Clem, Paul; Dirk, Shawn M.

Novel low loss photopatternable matrix materials for IR metamaterial applications were synthesized using the ring opening metathesis polymerization reaction (ROMP) of norbornene followed by a partial hydrogenation to remove most of the IR absorbing olefin groups which absorb in the 8-12 {micro}m range. Photopatterning was achieved via crosslinking of the remaining olefin groups with alpha, omega-dithiols via the thiol-ene coupling reaction. Since ROMP is a living polymerization the molecular weight of the polymer can be controlled simply by varying the ratio of catalyst to monomer. In order to determine the optimum photopattenable IR matrix material we varied the amount of olefin remaining after the partial hydrogenation. Hydrogenation was accomplished using tosyl hydrazide. The degree of hydrogenation can be controlled by altering the reaction time or reaction stoichiometry and the by-products can be easily removed during workup by precipitation into ethanol. Several polymers have been prepared using this reduction scheme including two polymers which had 54% and 68% olefin remaining. Free standing films (approx. 12 {micro}m) were prepared from the 68% olefin material using draw-down technique and subsequently irradiated with a UV lamp (365 nm) for thirty minutes to induce crosslinking via thiol-ene reaction. After crosslinking, the olefin IR-absorption band disappeared and the Tg of the matrix material increased; both desirable properties for IR metamaterial applications. The polymer system has inherent photopatternable behavior primarily because of solubility differences between the pre-polymer and cross-linked matrix. Photopatterned structures using the 54% as well as the 68% olefin material were easily obtained. The synthesis, processing, and IR absorption data and the ramifications to dielectric metamaterials will be discussed.

More Details

Hyperspectral imaging of microalgae using two-photon excitation

Jones, Howland D.T.; Sinclair, Michael B.; Luk, Ting S.; Collins, Aaron M.; Garcia, Omar F.; Melgaard, David K.; Timlin, Jerilyn A.; Reichardt, Thomas A.

A considerable amount research is being conducted on microalgae, since microalgae are becoming a promising source of renewable energy. Most of this research is centered on lipid production in microalgae because microalgae produce triacylglycerol which is ideal for biodiesel fuels. Although we are interested in research to increase lipid production in algae, we are also interested in research to sustain healthy algal cultures in large scale biomass production farms or facilities. The early detection of fluctuations in algal health, productivity, and invasive predators must be developed to ensure that algae are an efficient and cost-effective source of biofuel. Therefore we are developing technologies to monitor the health of algae using spectroscopic measurements in the field. To do this, we have proposed to spectroscopically monitor large algal cultivations using LIDAR (Light Detection And Ranging) remote sensing technology. Before we can deploy this type of technology, we must first characterize the spectral bio-signatures that are related to algal health. Recently, we have adapted our confocal hyperspectral imaging microscope at Sandia to have two-photon excitation capabilities using a chameleon tunable laser. We are using this microscope to understand the spectroscopic signatures necessary to characterize microalgae at the cellular level prior to using these signatures to classify the health of bulk samples, with the eventual goal of using of LIDAR to monitor large scale ponds and raceways. By imaging algal cultures using a tunable laser to excite at several different wavelengths we will be able to select the optimal excitation/emission wavelengths needed to characterize algal cultures. To analyze the hyperspectral images generated from this two-photon microscope, we are using Multivariate Curve Resolution (MCR) algorithms to extract the spectral signatures and their associated relative intensities from the data. For this presentation, I will show our two-photon hyperspectral imaging results on a variety of microalgae species and show how these results can be used to characterize algal ponds and raceways.

More Details

Photopatternable low loss polymer dielectric materials for IR metamaterial applications

Ginn, James C.; Hines, Paul H.; Arrington, Christian L.; Sinclair, Michael B.; Dirk, Shawn M.; Rasberry, Roger D.

An overwhelming majority of metamaterial designs that have been proposed thus far rely on the use of metallic resonators to afford properties that are unprecedented in nature. Though well suited for applications at radio and microwave frequencies, metals experience severe ohmic losses at higher frequencies rendering their use at such frequencies impractical. Certainly the future of metamaterials lies in their implementation in the visible and long wavelength infrared (LWIR, 8-12 {micro}m). Thus, alternative design protocols and material components tailored specifically for these frequencies are highly attractive. Herein, we present low permittivity, low permeability polymer dielectric materials that are well suited substrates for LWIR-metamaterial applications. These materials lack vibrational absorption bands in the 8-12 {micro}m range are 3D fabrication compatible, photopatternable, and high temperature tolerant. Thus, these materials are ideal for fabrication of 3D metamaterial structures operating in the LWIR and can also serve as negative photoresists for contact lithography applications.

More Details

Structure-property relations in negative permittivity reststrahlen materials for IR metamaterial applications

Ihlefeld, Jon F.; Ginn, James C.; Rodriguez, Marko A.; Kotula, Paul G.; Clem, Paul; Sinclair, Michael B.

We will present a study of the structure-property relations in Reststrahlen materials that possess a band of negative permittivities in the infrared. It will be shown that sub-micron defects strongly affect the optical response, resulting in significantly diminished permittivities. This work has implications on the use of ionic materials in IR-metamaterials.

More Details

Crystal coherence length effects on the infrared optical response of MgO thin films

Ginn, James C.; Kotula, Paul G.; Rodriguez, Marko A.; Clem, Paul; Sinclair, Michael B.

The role of crystal coherence length on the infrared optical response of MgO thin films was investigated with regard to Reststrahlen band photon-phonon coupling. Preferentially (001)-oriented sputtered and evaporated ion-beam assisted deposited thin films were prepared on silicon and annealed to vary film microstructure. Film crystalline coherence was characterized by x-ray diffraction line broadening and transmission electron microscopy. The infrared dielectric response revealed a strong dependence of dielectric resonance magnitude on crystalline coherence. Shifts to lower transverse optical phonon frequencies were observed with increased crystalline coherence. Increased optical phonon damping is attributed to increasing granularity and intergrain misorientation.

More Details

An effective media toolset for use in metamaterial design

Warne, Larry K.; Johnson, William A.; Langston, William L.; Sinclair, Michael B.

This paper introduces an effective-media toolset that can be used for the design of metamaterial structures based on metallic components such as split-ring resonators and dipoles, as well as dielectric spherical resonators. For demonstration purposes the toolset will be used to generate infrared metamaterial designs, and the predicted performances will be verified with full-wave numerical simulations.

More Details

3D metamaterials for the thermal infrared

Burckel, David B.; Ten Eyck, Gregory A.; Sinclair, Michael B.; Wendt, Joel R.

Metamaterials form a new class of artificial electromagnetic materials that provides the device designer with the ability to manipulate the flow of electromagnetic energy in ways that are not achievable with naturally occurring materials. However, progress toward practical implementation of metamaterials, particularly at infrared and visible frequencies, has been hampered by a combination of absorptive losses; the narrow band nature of the resonant metamaterial response; and the difficulty in fabricating fully 3-dimensional structures. They describe the progress of a recently initiated program at Sandia National Laboratories directed toward the development of practical 3D metamaterials operating in the thermal infrared. They discuss their analysis of fundamental loss limits for different classes of metamaterials. In addition, they discuss new design approaches that they are pursuing which reduce the reliance on metallic structures in an effort to minimize ohmic losses.

More Details

Fabrication techniques for 3D metamaterials in the mid-infrared

Wendt, Joel R.; Burckel, David B.; Ten Eyck, Gregory A.; Ellis, A.R.; Brener, Igal; Sinclair, Michael B.

The authors have developed two versions of a flexible fabrication technique known as membrane projection lithography that can produce nearly arbitrary patterns in '212 D' and fully three-dimensional (3D) structures. The authors have applied this new technique to the fabrication of split ring resonator-based metamaterials in the midinfrared. The technique utilizes electron beam lithography for resolution, pattern design flexibility, and alignment. The resulting structures are nearly three orders of magnitude smaller than equivalent microwave structures that were first used to demonstrate a negative index material. The fully 3D structures are highly isotropic and exhibit both electrically and magnetically excited resonances for incident transverse electromagnetic waves.

More Details

Fabrication of 3-D cubic unit cells with measured IR resonances

Sinclair, Michael B.; Brener, Igal; Ten Eyck, Gregory A.; Ellis, A.R.; Ginn, James C.; Wendt, Joel R.

3-D cubic unit cell arrays containing split ring resonators were fabricated and characterized. The unit cells are {approx}3 orders-of-magnitude smaller than microwave SRR-based metamaterials and exhibit both electrically and magnetically excited resonances for normally incident TEM waves in addition to showing improved isotropic response.

More Details

Amplitude and phase-resolved measurements of optical metamaterials in the mid-infrared by phase matched electro-optic sampling

Brener, Igal; Passmore, Brandon S.; Ten Eyck, Gregory A.; Wendt, Joel R.; Sinclair, Michael B.

We describe a time-domain spectroscopy system in the thermal infrared used for complete transmission and reflection characterization of metamaterials in amplitude and phase. The system uses a triple-output near-infrared ultrafast fiber laser, phase-locked difference frequency generation and phase-matched electro-optic sampling. We will present measurements of several metamaterials designs.

More Details

Resonant coupling to a dipole absorber inside a metamaterial: Anticrossing of the negative index response

Journal of Vacuum Science and Technology B

Smolev, Svyatoslav; Ku, Zahyun; Brueck, S.R.J.; Brener, Igal; Sinclair, Michael B.; Ten Eyck, Gregory A.; Langston, William L.; Basilio, Lorena I.

The authors experimentally demonstrate a resonant hybridization between the magnetic dipole structural resonance in the permeability of a fishnet metamaterial and an electric dipole material resonance in the permittivity of the dielectric spacer layer. The hybrid resonances in the permeability and the negative index response exhibit an anticrossing behavior. A simple analytic model and numerical simulations using a rigorous coupled-wave analysis are in excellent qualitative agreement with the experiment. © 2010 American Vacuum Society.

More Details

Variable-angle directional emissometer for moderate-temperature emissivity measurements

Proceedings of SPIE - The International Society for Optical Engineering

Ellis, A.R.; Graham, H.M.; Sinclair, Michael B.; Verley, Jason C.

We have developed a system to measure the directional thermal emission from a surface, and in turn, calculate its emissivity. This approach avoids inaccuracies sometimes encountered with the traditional method for calculating emissivity, which relies upon subtracting the measured total reflectivity and total transmissivity from unity. Typical total reflectivity measurements suffer from an inability to detect backscattered light, and may not be accurate for high angles of incidence. Our design allows us to vary the measurement angle (θ) from near-normal to ∼80°, and can accommodate samples as small as 7 mm on a side by controlling the sample interrogation area. The sample mount is open-backed to eliminate shine-through, can be heated up to 200°C, and is kept under vacuum to avoid oxidizing the sample. A cold shield reduces the background noise and stray signals reflected off the sample. We describe the strengths, weaknesses, trade-offs, and limitations of our system design, data analysis methods, the measurement process, and present the results of our validation of this Variable-Angle Directional Emissometer.

More Details

"Trojan Horse" strategy for deconstruction of biomass for biofuels production

Timlin, Jerilyn A.; Tran-Gyamfi, Mary; Sapra, Rajat S.; Sinclair, Michael B.; Simmons, Blake

Production of renewable biofuels to displace fossil fuels currently consumed in the transportation sector is a pressing multi-agency national priority. Currently, nearly all fuel ethanol is produced from corn-derived starch. Dedicated 'energy crops' and agricultural waste are preferred long-term solutions for renewable, cheap, and globally available biofuels as they avoid some of the market pressures and secondary greenhouse gas emission challenges currently facing corn ethanol. These sources of lignocellulosic biomass are converted to fermentable sugars using a variety of chemical and thermochemical pretreatments, which disrupt cellulose and lignin cross-links, allowing exogenously added recombinant microbial enzymes to more efficiently hydrolyze the cellulose for 'deconstruction' into glucose. This process is plagued with inefficiencies, primarily due to the recalcitrance of cellulosic biomass, mass transfer issues during deconstruction, and low activity of recombinant deconstruction enzymes. Costs are also high due to the requirement for enzymes and reagents, and energy-intensive and cumbersome pretreatment steps. One potential solution to these problems is found in synthetic biology; they propose to engineer plants that self-produce a suite of cellulase enzymes targeted to the apoplast for cleaving the linkages between lignin and cellulosic fibers; the genes encoding the degradation enzymes, also known as cellulases, are obtained from extremophilic organisms that grow at high temperatures (60-100 C) and acidic pH levels (<5). These enzymes will remain inactive during the life cycle of the plant but become active during hydrothermal pretreatment i.e., elevated temperatures. Deconstruction can be integrated into a one-step process, thereby increasing efficiency (cellulose-cellulase mass-transfer rates) and reducing costs. The proposed disruptive technologies address biomass deconstruction processes by developing transgenic plants encoding a suite of enzymes used in cellulosic deconstruction. The unique aspects of this technology are the rationally engineered, highly productive extremophilic enzymes, targeted to specific cellular locations (apoplast) and their dormancy during normal plant proliferation, which become Trojan horses during pretreatment conditions. They have been leveraging established Sandia's enzyme-engineering and imaging capabilities. Their technical approach not only targets the recalcitrance and mass-transfer problem during biomass degradation but also eliminates the costs associated with industrial-scale production of microbial enzymes added during processing.

More Details

Weighting hyperspectral image data for improved multivariate curve resolution results

Journal of Chemometrics

Jones, Howland D.T.; Haaland, David M.; Sinclair, Michael B.; Melgaard, David K.; Van Benthem, Mark H.; Pedroso, M.C.

The combination of hyperspectral confocal fluorescence microscopy and multivariate curve resolution (MCR) provides an ideal system for improved quantitative imaging when multiple fluorophores are present. However, the presence of multiple noise sources limits the ability of MCR to accurately extract pure-component spectra when there is high spectral and/or spatial overlap between multiple fluorophores. Previously, MCR results were improved by weighting the spectral images for Poisson-distributed noise, but additional noise sources are often present. We have identified and quantified all the major noise sources in hyperspectral fluorescence images. Two primary noise sources were found: Poisson-distributed noise and detector-read noise. We present methods to quantify detector-read noise variance and to empirically determine the electron multiplying CCD (EMCCD) gain factor required to compute the Poisson noise variance. We have found that properly weighting spectral image data to account for both noise sources improved MCR accuracy. In this paper, we demonstrate three weighting schemes applied to a real hyperspectral corn leaf image and to simulated data based upon this same image. MCR applied to both real and simulated hyperspectral images weighted to compensate for the two major noise sources greatly improved the extracted pure emission spectra and their concentrations relative to MCR with either unweighted or Poisson-only weighted data. Thus, properly identifying and accounting for the major noise sources in hyperspectral images can serve to improve the MCR results. These methods are very general and can be applied to the multivariate analysis of spectral images whenever CCD or EMCCD detectors are used. Copyright © 2008 John Wiley & Sons, Ltd.

More Details

Trilinear analysis of images obtained with a hyperspectral imaging confocal microscope

Journal of Chemometrics

Van Benthem, Mark H.; Keenan, Michael R.; Davis, Ryan W.; Liu, Ping; Jones, Howland D.T.; Haaland, David M.; Sinclair, Michael B.; Brasier, Allan R.

Hyperspectral imaging confocal microscopy (HSI-CM) is a powerful tool for the analysis of cellular processes such as the immune response. HSI-CM is a data rich technique that routinely generates two-way data having a spectral domain and an image or concentration domain. Using a variety of modifications to the instrument or experimental protocols, one can readily produce three-way data with HSI-CM. These data are often amenable to trilinear analysis. For example we have used a time series of 18 images acquired during photobleaching of the fluorophores in an effort to identify fluorescence resonance energy transfer (FRET). The resulting images represent intensity as a function of concentration, wavelength and photodegradation in time, to which we apply our techniques of trilinear decomposition. We have successfully employed trilinear decomposition of photobleaching spectral image data from fixed A549 cells transfected with yellow and green fluorescent proteins (YFP and GFP) as molecular probes of cellular proteins involved in the cellular immune response. While useful in the interpretation biological processes, the size of the data generated with the HSI-CM can be difficult to manage computationally. The 208 x 204 x 512 x 18 elements in the image data require careful processing and efficient analysis algorithms. Accordingly, we have implemented fast algorithms that can quickly perform the trilinear decomposition. In this paper we describe how three-way data are produced and the methods we have used to process them. Specifically, we show that co-adding spectra in a spatial neighborhood is a highly effective method for improving the performance of these algorithms without sacrificing resolution. Copyright © 2008 John Wiley & Sons, Ltd.

More Details

Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution

Journal of Neuroscience Methods

Sutherland, Vicki L.; Timlin, Jerilyn A.; Nieman, Linda T.; Guzowski, John F.; Chawla, Monica K.; Worley, Paul F.; Roysam, Badri; McNaughton, Bruce L.; Sinclair, Michael B.; Barnes, Carol A.

Simultaneous imaging of multiple cellular components is of tremendous importance in the study of complex biological systems, but the inability to use probes with similar emission spectra and the time consuming nature of collecting images on a confocal microscope are prohibitive. Hyperspectral imaging technology, originally developed for remote sensing applications, has been adapted to measure multiple genes in complex biological tissues. A spectral imaging microscope was used to acquire overlapping fluorescence emissions from specific mRNAs in brain tissue by scanning the samples using a single fluorescence excitation wavelength. The underlying component spectra obtained from the samples are then separated into their respective spectral signatures using multivariate analyses, enabling the simultaneous quantitative measurement of multiple genes either at regional or cellular levels. © 2006 Elsevier B.V. All rights reserved.

More Details

Imaging multiple endogenous and exogenous fluorescent species in cells and tissues

Progress in Biomedical Optics and Imaging - Proceedings of SPIE

Timlin, Jerilyn A.; Nieman, Linda T.; Jones, Howland D.T.; Sinclair, Michael B.; Haaland, David M.; Guzowski, John F.

Hyperspectral imaging provides complex image data with spectral information from many fluorescent species contained within the sample such as the fluorescent labels and cellular or pigment autofluorescence. To maximize the utility of this spectral imaging technique it is necessary to couple hyperspectral imaging with sophisticated multivariate analysis methods to extract meaningful relationships from the overlapped spectra. Many commonly employed multivariate analysis techniques require the identity of the emission spectra of each component to be known or pure component pixels within the image, a condition rarely met in biological samples. Multivariate curve resolution (MCR) has proven extremely useful for analyzing hyperspectral and multispectral images of biological specimens because it can operate with little or no a priori information about the emitting species, making it appropriate for interrogating samples containing autofluorescence and unanticipated contaminating fluorescence. To demonstrate the unique ability of our hyperspectral imaging system coupled with MCR analysis techniques we will analyze hyperspectral images of four-color in-situ hybridized rat brain tissue containing 455 spectral pixels from 550 - 850 nm. Even though there were only four colors imparted onto the tissue in this case, analysis revealed seven fluorescent species, including contributions from cellular autofluorescence and the tissue mounting media. Spectral image analysis will be presented along with a detailed discussion of the origin of the fluorescence and specific illustrations of the adverse effects of ignoring these additional fluorescent species in a traditional microscopy experiment and a hyperspectral imaging system.

More Details
Results 201–250 of 250
Results 201–250 of 250