Publications

Results 26–39 of 39

Search results

Jump to search filters

Thermal spray and cold spray analysis of density, porosity, and tensile Specimens for use with LIGA applications

Decker, Merlin K.; Smith, Mark F.

This analysis provides a preliminary investigation into using Twin-Wire Arc Thermal Spray and Cold Spray as material deposition processes for LIGA applications. These spray material processes were studied to make an initial determination of their potential as alternatives to producing mechanical parts via the electroplating process. Three materials, UltraMachinable{reg_sign} Stainless Steel, BondArc{reg_sign}, and aluminum, were sprayed using Thermal Spray. Only aluminum was sprayed using the Cold Spray process. Following the spray procedure, the test specimens were released from a copper mold and then tested. Three tests, density, tensile strength, and porosity, were performed on the specimens to determine the spray effect on material properties. Twin-Wire Arc Thermal Spray did not demonstrate adequate deposition properties and does not appear to be a good process candidate for LIGA. However, Cold Spray yielded better density results and warrants further investigation to analyze the minimum feature size produced by the process.

More Details

Oxidation in HVOF-sprayed steel

Smith, Mark F.

It is widely held that most of the oxidation in thermally sprayed coatings occurs on the surface of the droplet after it has flattened. The evidence in this paper suggests that, for the conditions studied here, oxidation of the top surface of flattened droplets is not the dominant oxidation mechanism. In this study, a mild steel wire (AISI 1025) was sprayed using a high-velocity oxy-fuel (HVOF) torch onto copper and aluminum substrates. Ion milling and Auger spectroscopy were used to examine the distribution of oxides within individual splats. Conventional metallographic analysis was also used to study oxide distributions within coatings that were sprayed under the same conditions. An analytical model for oxidation of the exposed surface of a splat is presented. Based on literature data, the model assumes that diffusion of iron through a solid FeO layer is the rate limiting factor in forming the oxide on the top surface of a splat. An FeO layer only a few thousandths of a micron thick is predicted to form on the splat surface as it cools. However, the experimental evidence shows that the oxide layers are typically 100x thicker than the predicted value. These thick, oxide layers are not always observed on the top surface of a splat. Indeed, in some instances the oxide layer is on the bottom, and the metal is on the top. The observed oxide distributions are more consistently explained if most of the oxide formed before the droplets impact the substrate.

More Details

Characterization of plasma sprayed and explosively consolidated simulated lunar soil

Smith, Mark F.

Two methods for the use of lunar materials for the construction of shelters on the Moon are being proposed: explosive consolidation of the soil into structural components and plasma spraying of the soil to join components. The plasma-sprayed coating would also provide protection from the intense radiation. In this work, a mare simulant was plasma-sprayed onto a stainless steel substrate. Deposition of a 0.020 inch coating using power inputs of 23, 25, 27 and 29 kW were compared. Hardness of the coatings increased with each increase of power to the system, while porosity at the interface decreased. All coatings exhibited good adhesion. Simultaneously, an explosively consolidated sample was similarly characterized to afford a comparison of structural features associated with each mode of proposed use.

More Details

A comparison of two laser-based diagnostics for analysis of particles in thermal spray streams

Smith, Mark F.

This paper discusses two commercially-available laser diagnostics that have been used in thermal spray research at Sandia National Laboratories: (1) a Phase Doppler Particle Analyzer (PDPA) and (2) a Laser Two-Focus (L2F) velocimeter. The PDPA provides simultaneous, correlated measurements of particle velocity and particle size distributions; but, particle sizing doesn`t work well with non-spherical particles or particles with rough surfaces. The L2F is used to collect particle velocity and number density distributions, and it can readily distinguish and separately measure particles with off-axis velocity vectors. PDPA and L2F principles of operation are presented along with potential advantages and limitations for thermal spray research. Four experiments were conducted to validate and compare measurement results with the PDPA and L2F instruments: (1) spinning wire, (2) powder in a High-Velocity Oxy-Fuel (HVOF) jet, (3) powder in a cold jet, and (4) droplets in a wire-fed HVOF jet. TWO DIFFERENT TYPES of commercially-available laser velocimeter systems, a Phase Doppler Particle Analyzer and a Laser-Two-Focus velocimeter have been used in the Thermal Spray Research Laboratory at Sandia National Laboratories. Each of these techniques has inherent advantages and limitations for thermal spray, and each involves assumptions that may not be valid for some experimental conditions. This paper describes operating principles and possible sources of measurement error for these two diagnostic systems. Some potential advantages and limitations are also presented. Four types of experiments were also conducted to validate and compare PDPA and L2F measurement results: (1) spinning wire, (2) powder in a High-Velocity Oxy-Fuel (HVOF) jet, (3) powder in a cold jet, and (4) droplets in a wire-fed HVOF jet. We also offer a few observations related to practical issues such as ease-of-use, reliability, and effects of dust and vibration in a thermal spray lab.

More Details

Thermal coating development for impulse drying

Journal of Thermal Spray Technology

Smith, Mark F.

A plasma-sprayed coating has been developed for the heated surface of rolls used in a new energy-efficient paper drying process, known as"Impulse Drying," which could save the US paper industry an estimated $800 million annually in reduced energy costs. Because impulse drying rolls operate at substantially higher surface temperatures than conventional drying rolls, the thermal properties of the roll surface must be carefully tailored to control energy transfer to the paper and thus prevent sheet delamination or other undesirable effects. To meet this requirement, a plasma-sprayed thermal barrier coating has been developed to control thermal mass, heat transfer, and steam infiltration. A coated test platen significantly outperformed a comparable uncoated steel platen in preliminary experiments with a heavyweight grade of paper on a laboratory-scale impulse drying simulator. Based on these results, the coating was then tested on the roll of a pilot-scale impulse dryer. Compared to conventional wet pressing, linerboard that was impulse dried with the coated test roll showed marked improvements in water removal as well as improved physical properties, such as density and specific elastic modulus. The successful prototype coating design has three plasma-sprayed layers that are deposited sequentially: a nickel alloy bond coat, a thick, 17% porous zirconia thermal barrier, and a thin, 5 to 7% porous zirconia top coat. © 1993 ASM International.

More Details

Diagnostic behavior of the Wire Arc Plasma spray process

Smith, Mark F.

Laser two-focus (L2F) velocimetry has been used to measure particle velocities in the Wire Arc Plasma spray process. Particle velocities were measured for aluminum, stainless steel, and copper feedstock with wire diameters of 1.6 mm and 0.9 mm. The Wire Arc Plasma gun was operated in both a single-gas mode, using air, and in a two-gas mode, using a mixture of argon/35% hydrogen as the primary plasma gas with pure argon as the secondary gas. The results indicate that maximum particle velocities are as high as 180 m/s for aluminum sprayed using air and 130 m/s using the argon/hydrogen mixture. The results also show that arc current and wire feed rate have little effect on particle velocity; however, particle velocities increase significantly with decreasing wire diameter and with decreasing density of the feedstock material.

More Details

Modeling of the vacuum plasma spray process

Smith, Mark F.

Experimental and analytical studies have been conducted to investigate gas, particle, and coating dynamics in the vacuum plasma spray (VPS) process for a tungsten powder. VPS coatings were examined metallographically and the results compared with the model`s predictions. The plasma was numerically modeled from the cathode tip to the spray distance in the free plume for the experimental conditions of this study. This information was then used as boundary conditions to solve the particle dynamics. The predicted temperature and velocity of the powder particles at standoff were then used as initial conditions for a coating dynamics code. The code predicts the coating morphology for the specific process parameters. The predicted characteristics exhibit good correlation with the observed coating properties.

More Details

HVOF: Particle, Flame Diagnostics and Coating Characteristics

Smith, Mark F.

Dual focus laser velocimetry (L2F), photographic techniques, and pressure measurements were used to investigate particle and flame characteristics of a high velocity oxygen/fuel (HVOF) flame spray gun known as CDS''. Velocities of alumina, tungsten carbide, and Triballoy particles within the HVOF effluent stream have been measured using L2F techniques. Photographs of the exiting gases were used to determine the local Mach numbers within the gas stream. Measurements of Mach angles in the photographs were used to determine the actual gas velocity in the free jet of the device. Pressure measurements were made on the HVOF device which enabled calculations of the gas content, R, and the specific heat ratio, {kappa}. These calculations combined with estimates of gas temperature are used to calculate gas velocities at Mach 1 (nozzle exit). The HVOF device was used to produce dense WC/12 wt. % Co and Triballoy T-400 coatings. For the two gas flow conditions examined, higher hardness values and densities were observed for coatings deposited at the higher gas flow rates.

More Details
Results 26–39 of 39
Results 26–39 of 39