Publications

Results 26–34 of 34

Search results

Jump to search filters

Design of the PST: A Diagnostic for 1-D Imaging of Fast Z-Pinch Power Emissions

Rochau, G.A.; Derzon, Mark S.; Chandler, Gordon A.; Lazier, Steven E.

Fast Z-pinch technology developed on the Z machine at Sandia National Laboratories can produce up to 230 TW of thermal x-ray power for applications in inertial confinement fusion (ICF) and weapons physics experiments. During implosion, these Z-pinches develop Rayleigh-Taylor (R-T) instabilities which are very difficult to diagnose and which functionally diminish the overall pinch quality. The Power-Space-Time (PST) instrument is a newly configured diagnostic for measuring the pinch power as a function of both space and time in a Z-pinch. Placing the diagnostic at 90 degrees from the Z-pinch axis, the PST provides a new capability in collecting experimental data on R-T characteristics for making meaningful comparisons to magneto-hydrodynamic computer models. This paper is a summary of the PST diagnostic design. By slit-imaging the Z-pinch x-ray emissions onto a linear scintillator/fiber-optic array coupled to a streak camera system, the PST can achieve {approximately}100 {micro}m spatial resolution and {approximately}1.3 ns time resolution. Calculations indicate that a 20 {micro}m thick scintillating detection element filtered by 1,000 {angstrom} of Al is theoretically linear in response to Plankian x-ray distributions corresponding to plasma temperatures from 40 eV to 150 eV, By calibrating this detection element to x-ray energies up to 5,000 eV, the PST can provide pinch power as a function of height and time in a Z-pinch for temperatures ranging from {approximately}40 eV to {approximately}400 eV. With these system pm-meters, the PST can provide data for an experimental determination of the R-T mode number, amplitude, and growth rate during the late-time pinch implosion.

More Details

Pinch Me - I'm Fusing!

Science Fiction Fact and Fantasy

Derzon, Mark S.

The process of combining nuclei (the protons and neutrons inside an atomic nucleus) together with a release of kinetic energy is called fusion. This process powers the Sun, it contributes to the world stockpile of weapons of mass destruction and may one day generate safe, clean electrical power. Understanding the intricacies of fusion power, promised for 50 years, ,is sometimes difficult because there are a number of ways of doing it. There is hot fusion, cold fusion and con-fusion. Hot fusion is what powers suns through the conversion of mass energy to kinetic energy. Cold fusion generates con-fusion and nobody really knows what it is. Honestly - this is true. There does seem to be something going on here; I just don't know what. Apparently some experimenters get energy out of a process many call cold fission but no one seems to know what it is, or how to do it reliably. It is not getting much attention from the mainline physics community. Even so, no one is generating electrical power for you and me with either method. In this article 1 will point out some basic features of the mainstream approaches taken to hot fusion power, as well as describe why z pinches are worth pursuing as a driver for a power reactor and may one day generate electrical power for mankind.

More Details

Z-pinch driven fusion energy

Slutz, Stephen A.; Olson, Craig L.; Rochau, Gary E.; Derzon, Mark S.

The Z machine at Sandia National Laboratories (SNL) is the most powerful multi-module synchronized pulsed-power accelerator in the world. Rapid development of z-pinch loads on Z has led to outstanding progress in the last few years, resulting in radiative powers of up to 280 TW in 4 ns and a total radiated x-ray energy of 1.8 MJ. The present goal is to demonstrate single-shot, high-yield fusion capsules. Pulsed power is a robust and inexpensive technology, which should be well suited for Inertial Fusion Energy, but a rep-rated capability is needed. Recent developments have led to a viable conceptual approach for a rep-rated z-pinch power plant for IFE. This concept exploits the advantages of going to high yield (a few GJ) at low rep-rate ({approximately} 0.1 Hz), and using a Recyclable Transmission Line (RTL) to provide the necessary standoff between the fusion target and the power plant chamber. In this approach, a portion of the transmission line near the capsule is replaced after each shot. The RTL should be constructed of materials that can easily be separated from the liquid coolant stream and refabricated for a subsequent shots. One possibility is that most of the RTL is formed by casting FLiBe, a salt composed of fluorine, lithium, and beryllium, which is an attractive choice for the reactor coolant, with chemically compatible lead or tin on the surface to provide conductivity. The authors estimate that fusion yields greater than 1 GJ will be required for efficient generation of electricity. Calculations indicate that the first wall will have an acceptable lifetime with these high yields if blast mitigation techniques are used. Furthermore, yields above 5 GJ may allow the use of a compact blanket direct conversion scheme.

More Details

Scaling and optimization of the radiation temperature in dynamic hohlraums

Physics of Plasmas

Slutz, Stephen A.; Douglas, Melissa R.; Lash, Joel S.; Vesey, Roger A.; Chandler, Gordon A.; Nash, Thomas J.; Derzon, Mark S.

The authors have constructed a quasi-analytic model of the dynamic hohlraum. Solutions only require a numerical root solve, which can be done very quickly. Results of the model are compared to both experiments and full numerical simulations with good agreement. The computational simplicity of the model allows one to find the behavior of the hohlraum temperature as a function the various parameters of the system and thus find optimum parameters as a function of the driving current. The model is used to investigate the benefits of ablative standoff and axial convergence.

More Details

Pinch me - I'm fusing! Fusion Power - what is it? What is a z pinch? And why are z-pinches a promising fusion power technology?

Science Fiction and Fact Magazine

Derzon, Mark S.

The process of combining nuclei (the protons and neutrons inside an atomic nucleus) together with a release of kinetic energy is called fusion. This process powers the Sun, it contributes to the world stockpile of weapons of mass destruction and may one day generate safe, clean electrical power. Understanding the intricacies of fusion power, promised for 50 years, is sometimes difficult because there are a number of ways of doing it. There is hot fusion, cold fusion and con-fusion. Hot fusion is what powers suns through the conversion of mass energy to kinetic energy. Cold fusion generates con-fusion and nobody really knows what it is. Even so, no one is generating electrical power for you and me with either method. In this article the author points out some basic features of the mainstream approaches taken to hot fusion power, as well as describe why z pinches are worth pursuing as a driver for a power reactor and how it may one day generate electrical power for mankind.

More Details

The physics of fast Z pinches

Reviews of Modern Physics

Derzon, Mark S.; Matzen, M.K.

The spectacular progress made during the last few years in reaching high energy densities in fast implosions of annular current sheaths (fast Z pinches) opens new possibilities for a broad spectrum of experiments, from x-ray generation to controlled thermonuclear fusion and astrophysics. At present Z pinches are the most intense laboratory x-ray sources (1.8 MJ in 5 ns from a volume 2 mm in diameter and 2 cm tall). Powers in excess of 200 TW have been obtained. This warrants summarizing the present knowledge of physics that governs the behavior of radiating, current-carrying plasma in fast Z pinches. This survey covers essentially all aspects of the physics of fast Z pinches: initiation, instabilities of the early stage, magnetic Rayleigh-Taylor instability in the implosion phase, formation of a transient quasiequilibrium near the stagnation point, and rebound. Considerable attention is paid to the analysis of hydrodynamic instabilities governing the implosion symmetry. Possible ways of mitigating these instabilities are discussed. Nonmagnetohydrodynamic effects (anomalous resistivity, generation of particle beams, etc.) are summarized. Various applications of fast Z pinches are briefly described. Scaling laws governing development of more powerful Z pinches are presented.

More Details

Cylindrical target Li-beam-driven hohlraum experiments

Derzon, Mark S.

The authors performed a series of experiments on the Particle Beam Fusion Accelerator II (PBFA II) in May, 1994, and obtained a brightness temperature of 61 {+-} 2 eV for an ion-beam heated hohlraum. The hohlraum was a 4-mm-diameter, right-circular cylinder with a 1.5-mm-thick gold wall, a low-density CH foam fill, and a 1.5- or 3-mm-diameter diagnostic aperture in the top. The nominal parameters of the radially-incident PBFA II Li ion beam were 9 MeV peak energy ({approximately}10 MeV at the gas cell) at the target at a peak power of 2.5 {+-} 0.3 TW/cm{sup 2} and a 15 ns pulse width. Azimuthal variations in intensity of a factor of 3, with respect to the mean, were observed. Nonuniformities in thermal x-ray emission across the area of the diagnostic hole were also observed. Time-dependent hole-closure velocities were measured: the time-averaged velocity of {approximately}2 cm/{micro}s is in good agreement with sound speed estimates. Unfolded x-ray spectra and brightness temperatures as a function of time are reported and compared to simulations. Hole closure corrections are discussed with comparisons between XRD and bolometer measurements. Temperature scaling with power on target is also presented.

More Details

Experimental results and modeling of a dynamic hohlraum on SATURN

Derzon, Mark S.

Experiments were performed at SATURN, a high current z-pinch, to explore the feasibility of creating a hohlraum by imploding a tungsten wire array onto a low-density foam. Emission measurements in the 200--280 eV energy band were consistent with a 110--135 eV Planckian before the target shock heated, or stagnated, on-axis. Peak pinch radiation temperatures of nominally 160 eV were obtained. Measured early time x-ray emission histories and temperature estimates agree well with modeled performance in the 200--280 eV band using a 2D radiation magneto-hydrodynamics code. However, significant differences are observed in comparisons of the x-ray images and 2D simulations.

More Details

Performance comparison of streak camera recording systems

Derzon, Mark S.

Streak camera based diagnostics are vital to the inertial confinement fusion program at Sandia National Laboratories. Performance characteristics of various readout systems coupled to an EGG-AVO streak camera were analyzed and compared to scaling estimates. The purpose of the work was to determine the limits of the streak camera performance and the optimal fielding conditions for the Amador Valley Operations (AVO) streak camera systems. The authors measured streak camera limitations in spatial resolution and sensitivity. Streak camera limits on spatial resolution are greater than 18 lp/mm at 4% contrast. However, it will be difficult to make use of any resolution greater than this because of high spatial frequency variation in the photocathode sensitivity. They have measured a signal to noise of 3,000 with 0.3 mW/cm{sup 2} of 830 nm light at a 10 ns/mm sweep speed. They have compared lens coupling systems with and without micro-channel plate intensifiers and systems using film or charge coupled device (CCD) readout. There were no conditions where film was found to be an improvement over the CCD readout. Systems utilizing a CCD readout without an intensifier have comparable resolution, for these source sizes and at a nominal cost in signal to noise of 3, over those with an intensifier. Estimates of the signal-to-noise for different light coupling methods show how performance can be improved.

More Details
Results 26–34 of 34
Results 26–34 of 34