Publications

Results 51–100 of 151

Search results

Jump to search filters

A new generation of effective core potentials for correlated calculations

Journal of Chemical Physics

Bennett, Michael; Melton, Cody A.; Shulenburger, Luke N.; Annaberdiyev, Abdulgani; Wang, Guangming; Mitas, Lubos

We outline ideas on desired properties for a new generation of effective core potentials (ECPs) that will allow valence-only calculations to reach the full potential offered by recent advances in many-body wave function methods. The key improvements include consistent use of correlated methods throughout ECP constructions and improved transferability as required for an accurate description of molecular systems over a range of geometries. The guiding principle is the isospectrality of all-electron and ECP Hamiltonians for a subset of valence states. We illustrate these concepts on a few first- and second-row atoms (B, C, N, O, S), and we obtain higher accuracy in transferability than previous constructions while using semi-local ECPs with a small number of parameters. In addition, the constructed ECPs enable many-body calculations of valence properties with higher (or same) accuracy than their all-electron counterparts with uncorrelated cores. This implies that the ECPs include also some of the impacts of core-core and core-valence correlations on valence properties. The results open further prospects for ECP improvements and refinements.

More Details

Mechanical and optical response of [100] lithium fluoride to multi-megabar dynamic pressures

Journal of Applied Physics

Davis, Jean-Paul; Knudson, Marcus D.; Shulenburger, Luke N.; Crockett, Scott D.

An understanding of the mechanical and optical properties of lithium fluoride (LiF) is essential to its use as a transparent tamper and window for dynamic materials experiments. In order to improve models for this material, we applied iterative Lagrangian analysis to ten independent sets of data from magnetically driven planar shockless compression experiments on single crystal [100] LiF to pressures as high as 350 GPa. We found that the compression response disagreed with a prevalent tabular equation of state for LiF that is commonly used to interpret shockless compression experiments. We also present complementary data from ab initio calculations performed using the diffusion quantum Monte Carlo method. The agreement between these two data sets lends confidence to our interpretation. In order to aid in future experimental analysis, we have modified the tabular equation of state to match the new data. We have also extended knowledge of the optical properties of LiF via shock-compression and shockless compression experiments, refining the transmissibility limit, measuring the refractive index to ∼300 GPa, and confirming the nonlinear dependence of the refractive index on density. We present a new model for the refractive index of LiF that includes temperature dependence and describe a procedure for correcting apparent velocity to true velocity for dynamic compression experiments.

More Details

Shock Response and Phase Transitions of MgO at Planetary Impact Conditions

Physical Review Letters

Root, Seth; Shulenburger, Luke N.; Lemke, Raymond W.; Foulk, James W.; Mattsson, Thomas; Desjarlais, Michael P.

The moon-forming impact and the subsequent evolution of the proto-Earth is strongly dependent on the properties of materials at the extreme conditions generated by this violent collision. We examine the high pressure behavior of MgO, one of the dominant constituents in Earth's mantle, using high-precision, plate impact shock compression experiments performed on Sandia National Laboratories' Z Machine and extensive quantum calculations using density functional theory (DFT) and quantum Monte Carlo (QMC) methods. The combined data span from ambient conditions to 1.2 TPa and 42 000 K, showing solid-solid and solid-liquid phase boundaries. Furthermore our results indicate that under impact the solid and liquid phases coexist for more than 100 GPa, pushing complete melting to pressures in excess of 600 GPa. The high pressure required for complete shock melting has implications for a broad range of planetary collision events.

More Details
Results 51–100 of 151
Results 51–100 of 151