Publications

Results 101–150 of 199

Search results

Jump to search filters

Experimental demonstration of the stabilizing effect of dielectric coatings on magnetically accelerated imploding metallic liners

Physical Review Letters

Awe, Thomas J.; Peterson, K.J.; Yu, Edmund; Mcbride, Ryan; Sinars, Daniel; Gomez, Matthew R.; Jennings, Christopher A.; Martin, Matthew R.; Rosenthal, Stephen E.; Sefkow, Adam B.; Slutz, Stephen A.; Vesey, Roger A.; Schroen, D.G.; Tomlinson, Kurt

Enhanced implosion stability has been experimentally demonstrated for magnetically accelerated liners that are coated with 70 μm of dielectric. The dielectric tamps liner-mass redistribution from electrothermal instabilities and also buffers coupling of the drive magnetic field to the magneto-Rayleigh-Taylor instability. A dielectric-coated and axially premagnetized beryllium liner was radiographed at a convergence ratio [CR=Rin,0/Rin(z,t)] of 20, which is the highest CR ever directly observed for a strengthless magnetically driven liner. Lastly, the inner-wall radius Rin(z,t) displayed unprecedented uniformity, varying from 95 to 130 μm over the 4.0 mm axial height captured by the radiograph.

More Details

Scaling magnetized liner inertial fusion on Z and future pulsed-power accelerators

Physics of Plasmas

Slutz, Stephen A.; Stygar, William A.; Gomez, Matthew R.; Peterson, K.J.; Sefkow, Adam B.; Sinars, Daniel; Vesey, Roger A.; Campbell, E.M.; Betti, R.

The MagLIF (Magnetized Liner Inertial Fusion) concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] has demonstrated fusion-relevant plasma conditions [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z accelerator with a peak drive current of about 18 MA. We present 2D numerical simulations of the scaling of MagLIF on Z as a function of drive current, preheat energy, and applied magnetic field. The results indicate that deuterium-tritium (DT) fusion yields greater than 100 kJ could be possible on Z when all of these parameters are at the optimum values: I.e., peak current = 25 MA, deposited preheat energy = 5 kJ, and Bz = 30 T. Much higher yields have been predicted [S. A. Slutz and R. A. Vesey, Phys. Rev. Lett. 108, 025003 (2012)] for MagLIF driven with larger peak currents. Two high performance pulsed-power accelerators (Z300 and Z800) based on linear-transformer-driver technology have been designed [W. A. Stygar et al., Phys. Rev. ST Accel. Beams 18, 110401 (2015)]. The Z300 design would provide 48 MA to a MagLIF load, while Z800 would provide 65 MA. Parameterized Thevenin-equivalent circuits were used to drive a series of 1D and 2D numerical MagLIF simulations with currents ranging from what Z can deliver now to what could be achieved by these conceptual future pulsed-power accelerators. 2D simulations of simple MagLIF targets containing just gaseous DT have yields of 18 MJ for Z300 and 440 MJ for Z800. The 2D simulated yield for Z800 is increased to 7 GJ by adding a layer of frozen DT ice to the inside of the liner.

More Details

Laser propagation measurements in long-scale-length underdense plasmas relevant to magnetized liner inertial fusion

Physical Review E

Harvey-Thompson, Adam J.; Sefkow, Adam B.; Wei, M.S.; Nagayama, Taisuke; Campbell, E.M.; Blue, B.E.; Heeter, R.F.; Koning, J.M.; Peterson, K.J.; Schmitt, A.

We report experimental results and simulations showing efficient laser energy coupling into plasmas at conditions relevant to the magnetized liner inertial fusion (MagLIF) concept. In MagLIF, to limit convergence and increase the hydrodynamic stability of the implosion, the fuel must be efficiently preheated. To determine the efficiency and physics of preheating by a laser, an Ar plasma with ne/ncrit∼0.04 is irradiated by a multi-ns, multi-kJ, 0.35-μm, phase-plate-smoothed laser at spot-averaged intensities ranging from 1.0×1014 to 2.5×1014W/cm2 and pulse widths from 2 to 10 ns. Time-resolved x-ray images of the laser-heated plasma are compared to two-dimensional radiation-hydrodynamic simulations that show agreement with the propagating emission front, a comparison that constrains laser energy deposition to the plasma. The experiments show that long-pulse, modest-intensity (I=1.5×1014W/cm2) beams can efficiently couple energy (∼82% of the incident energy) to MagLIF-relevant long-length (9.5 mm) underdense plasmas. The demonstrated heating efficiency is significantly higher than is thought to have been achieved in early integrated MagLIF experiments [A. B. Sefkow, Phys. Plasmas 21, 072711 (2014)10.1063/1.4890298].

More Details

Delivering Kilojoules of Pre-Heat to Fusion Targets in Sandia's Z-Machine

Geissel, Matthias; Awe, Thomas J.; Campbell, E.M.; Gomez, Matthew R.; Harding, Eric H.; Harvey-Thompson, Adam J.; Hansen, Stephanie B.; Jennings, Christopher A.; Kimmel, Mark; Knapp, P.F.; Lewis, Sean M.; Mcbride, Ryan; Peterson, K.J.; Schollmeier, Marius; Sefkow, Adam B.; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Porter, John L.

Abstract not provided.

Exploring magnetized liner inertial fusion with a semi-analytic model

Physics of Plasmas

Mcbride, Ryan; Slutz, Stephen A.; Vesey, Roger A.; Gomez, Matthew R.; Sefkow, Adam B.; Hansen, Stephanie B.; Knapp, P.F.; Schmit, Paul; Geissel, Matthias; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Harding, Eric H.; Awe, Thomas J.; Rovang, Dean C.; Hahn, Kelly; Martin, Matthew R.; Cochrane, Kyle; Peterson, K.J.; Rochau, G.A.; Porter, John L.; Stygar, William A.; Campbell, Edward M.; Nakhleh, Charles W.; Herrmann, Mark C.; Cuneo, Michael E.; Sinars, Daniel

In this study, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.

More Details

Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

Physical Review Special Topics - Accelerators and Beams

Stygar, William A.; Awe, Thomas J.; Bailey, James E.; Breden, Eric W.; Campbell, Edward M.; Cuneo, Michael E.; Fehl, David L.; Gomez, Matthew R.; Hutsel, Brian T.; Jennings, Christopher A.; Jones, Michael; Jones, Peter; Knapp, P.F.; Lash, Joel S.; Leckbee, Joshua; Lewis, Sean M.; Long, Finis W.; Lucero, Diego; Martin, Matthew R.; Matzen, M.K.; Mazarakis, Michael G.; Mcbride, Ryan; Mckee, G.R.; Moore, James M.; Mulville, Thomas D.; Peterson, K.J.; Porter, John L.; Reisman, David; Rochau, G.A.; Savage, Mark E.; Sceiford, M.E.; Schmit, Paul; Schwarz, Jens; Sefkow, Adam B.; Sinars, Daniel; Slutz, Stephen A.; Stoltzfus, Brian; Vesey, Roger A.; Wakeland, Peter E.; Wisher, Matthew L.; Woodworth, J.R.

We have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated by the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator's water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator's physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD) simulations suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator's capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density-physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.

More Details

Laser Pre-Heat Studies for magLIF with Z-Beamlet

Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Campbell, Edward M.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Jennings, Christopher A.; Kimmel, Mark; Knapp, P.F.; Lewis, Sean M.; Mcbride, Ryan; Peterson, K.J.; Schollmeier, Marius; Sefkow, Adam B.; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Porter, John L.

Abstract not provided.

Exploring magnetized liner inertial fusion with a semi-analytic model

Mcbride, Ryan; Slutz, Stephen A.; Sinars, Daniel; Vesey, Roger A.; Gomez, Matthew R.; Sefkow, Adam B.; Hansen, Stephanie B.; Cochrane, Kyle; Schmit, Paul; Knapp, P.F.; Geissel, Matthias; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Martin, Matthew R.; Awe, Thomas J.; Rovang, Dean C.; Lamppa, Derek C.; Peterson, K.J.; Rochau, G.A.; Porter, John L.; Stygar, William A.; Cuneo, Michael E.

Abstract not provided.

Fusion-Neutron Measurements for Magnetized Liner Inertial Fusion Experiments on the Z Accelerator

Hahn, Kelly; Chandler, Gordon A.; Ruiz, Carlos L.; Cooper, Gary; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel; Hansen, Stephanie B.; Knapp, P.F.; Schmit, Paul; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Torres, Jose; Bur, James A.; Cuneo, Michael E.; Glebov, V.Y.; Harvey-Thompson, Adam J.; Herrmann, M.C.; Hess, Mark H.; Johns, Owen; Jones, Brent M.; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Porter, John L.; Reneker, Joseph; Robertson, G.K.; Rochau, G.A.; Savage, Mark E.; Smith, Ian C.; Styron, Jedediah D.; Vesey, Roger A.

Abstract not provided.

Laser-Fuel Coupling Studies for MagLIF with Z-Beamlet

Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Campbell, Michael E.; Gomez, Matthew R.; Harding, Eric H.; Jennings, Christopher A.; Kimmel, Mark; Knapp, P.F.; Lewis, Sean M.; Mcbride, Ryan; Peterson, K.J.; Schollmeier, Marius; Schmit, Paul; Sefkow, Adam B.; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Porter, John L.

Abstract not provided.

An efficient method for unfolding kinetic pressure driven VISAR data

High Power Laser Science and Engineering

Hess, Mark H.; Peterson, K.J.; Harvey-Thompson, Adam J.

Velocity Interferometer System for Any Reflector (VISAR) [Barker and Hollenbach, J. Appl. Phys. 43, 4669 (1972)] is a well-known diagnostic that is employed on many shock physics and pulsed-power experiments. With the VISAR diagnostic, the velocity on the surface of any metal flyer can be found. For most experiments employing VISAR, either a kinetic pressure [Grady, Mech. Mater. 29, 181 (1998)] or a magnetic pressure [Lemke et al., Intl J. Impact Eng. 38, 480 (2011)] drives the motion of the flyer. Moreover, reliable prediction of the time-dependent pressure is often a critical component to understanding the physics of these experiments. Although VISAR can provide a precise measurement of a flyer’s surface velocity, the real challenge of this diagnostic implementation is using this velocity to unfold the time-dependent pressure. The purpose of this study is to elucidate a new method for quickly and reliably unfolding VISAR data.

More Details

X-ray Imaging of MagLIF Experiments Using a Spherically Bent Crystal Optic

Harding, Eric H.; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Geissel, Matthias; Harvey-Thompson, Adam J.; Schollmeier, Marius; Peterson, K.J.; Awe, Thomas J.; Hansen, Stephanie B.; Hahn, Kelly; Knapp, P.F.; Schmit, Paul; Ruiz, Carlos L.; Sinars, Daniel; Jennings, Christopher A.; Smith, Ian C.; Rovang, Dean C.; Chandler, Gordon A.; Martin, Matthew R.; Mcbride, Ryan; Porter, John L.; Rochau, G.A.

Abstract not provided.

X-ray Imaging of MagLIF Experiments Using a Spherically Bent Crystal Optic

Harding, Eric H.; Gomez, Matthew R.; Slutz, Stephen A.; Geissel, Matthias; Harvey-Thompson, Adam J.; Schollmeier, Marius; Peterson, K.J.; Awe, Thomas J.; Hansen, Stephanie B.; Schmit, Paul; Ruiz, Carlos L.; Sinars, Daniel; Jennings, Christopher A.; Smith, Ian C.; Rovang, Dean C.; Chandler, Gordon A.; Martin, Matthew R.; Mcbride, Ryan; Porter, John L.; Rochau, G.A.

Abstract not provided.

Exploring magnetized liner inertial fusion with a semi-analytic model

Mcbride, Ryan; Slutz, Stephen A.; Sinars, Daniel; Vesey, Roger A.; Gomez, Matthew R.; Sefkow, Adam B.; Hansen, Stephanie B.; Cochrane, Kyle; Rovang, Dean C.; Lamppa, Derek C.; Geissel, Matthias; Harvey-Thompson, Adam J.; Schmit, Paul; Knapp, P.F.; Awe, Thomas J.; Jennings, Christopher A.; Martin, Matthew R.; Peterson, K.J.; Rochau, G.A.; Porter, John L.; Stygar, William A.; Cuneo, Michael E.

Abstract not provided.

Experimental Progress in Magnetized Liner Inertial Fusion (MagLIF)

Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Geissel, Matthias; Harvey-Thompson, Adam J.; Peterson, K.J.; Hansen, Stephanie B.; Hahn, Kelly; Knapp, P.F.; Schmit, Paul; Ruiz, Carlos L.; Sinars, Daniel; Awe, Thomas J.; Harding, Eric H.; Jennings, Christopher A.; Smith, Ian C.; Rovang, Dean C.; Chandler, Gordon A.; Cuneo, Michael E.; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Porter, John L.; Rochau, G.A.

Abstract not provided.

Recent progress in Magnetized Liner Inertial Fusion (MagLIF) experiments

Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Geissel, Matthias; Harvey-Thompson, Adam J.; Peterson, K.J.; Awe, Thomas J.; Hansen, Stephanie B.; Harding, Eric H.; Hahn, Kelly; Knapp, P.F.; Schmit, Paul; Ruiz, Carlos L.; Sinars, Daniel; Jennings, Christopher A.; Smith, Ian C.; Rovang, Dean C.; Chandler, Gordon A.; Martin, Matthew R.; Mcbride, Ryan; Porter, John L.; Rochau, G.A.

Abstract not provided.

Magnetized Liner Inertial Fusion on the Z Pulsed-Power Accelerator

Mcbride, Ryan; Sinars, Daniel; Slutz, Stephen A.; Gomez, Matthew R.; Sefkow, Adam B.; Hansen, Stephanie B.; Awe, Thomas J.; Peterson, K.J.; Knapp, P.F.; Schmit, Paul; Rovang, Dean C.; Geissel, Matthias; Vesey, Roger A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Martin, Matthew R.; Lemke, Raymond W.; Hahn, Kelly; Harding, Eric H.; Cuneo, Michael E.; Porter, John L.; Rochau, G.A.; Stygar, William A.

Abstract not provided.

LEH Transmission and Early Fuel Heating for MagLIF with Z-Beamlet

Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Campbell, Edward M.; Gomez, Matthew R.; Harding, Eric H.; Jennings, Christopher A.; Kimmel, Mark; Knapp, P.F.; Lewis, Sean M.; Mcbride, Ryan; Peterson, K.J.; Schollmeier, Marius; Schmit, Paul; Sefkow, Adam B.; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Stahoviak, J.W.; Vesey, Roger A.; Porter, John L.

Abstract not provided.

Effects of magnetization on fusion product trapping and secondary neutron spectra

Physics of Plasmas

Knapp, P.F.; Schmit, Paul; Hansen, Stephanie B.; Gomez, Matthew R.; Hahn, Kelly; Sinars, Daniel; Peterson, K.J.; Slutz, Stephen A.; Sefkow, Adam B.; Awe, Thomas J.; Harding, Eric H.; Jennings, Christopher A.; Chandler, Gordon A.; Cooper, Gary; Cuneo, Michael E.; Geissel, Matthias; Harvey-Thompson, Adam J.; Porter, John L.; Rochau, G.A.; Rovang, Dean C.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Stygar, William A.; Herrmann, Mark

In magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, we found that the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner InertialFusion experiments conducted on the Z machine at Sandia National Laboratories. Furthermore, we show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG · cm, a ~ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. Lastly, this is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

More Details

Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments

Physics of Plasmas

Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Hahn, Kelly; Hansen, Stephanie B.; Knapp, P.F.; Schmit, Paul; Ruiz, Carlos L.; Sinars, Daniel; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Smith, Ian C.; Chandler, Gordon A.; Cooper, Gary; Cuneo, Michael E.; Harvey-Thompson, Adam J.; Herrmann, Mark C.; Hess, Mark H.; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Porter, John L.; Rochau, G.A.; Savage, Mark E.; Schroen, Diana G.; Stygar, William A.; Vesey, Roger A.

In this study, the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as high as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 1012 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm3. In these experiments, up to 5 ×1010 secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1–2 mg/cm2, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 1010. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.

More Details

Recent Progress and Future Potential of Magnetized Liner Inertial Fusion (MagLIF)

Sandia journal manuscript; Not yet accepted for publication

Slutz, Stephen A.; Gomez, Matthew R.; Sefkow, Adam B.; Sinars, Daniel; Hahn, Kelly; Hansen, Stephanie B.; Harding, Eric H.; Knapp, P.F.; Schmit, Paul; Jennings, Christopher A.; Awe, Thomas J.; Herrmann, M.C.; Hess, Mark H.; Johns, Owen; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Geissel, Matthias; Rovang, Dean C.; Chandler, Gordon A.; Cooper, Gary; Cuneo, Michael E.; Harvey-Thompson, Adam J.; Peterson, K.J.; Porter, John L.; Robertson, G.K.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Stygar, William A.; Vesey, Roger A.

The standard approaches to inertial confinement fusion (ICF) rely on implosion velocities greater than 300 km/s and spherical convergence to achieve the high fuel temperatures (T > 4 keV) and areal densities (ρr > 0.3 g/cm2) required for ignition1. Such high velocities are achieved by heating the outside surface of a spherical capsuleeither directly with a large number of laser beams (Direct Drive) or with x-rays generated within a hohlraum (Indirect Drive). A much more energetically efficient approach is to use the magnetic pressure generated by a pulsed power machine to directly drive an implosion. In this approach 5-10% of the stored energy can be converted to the implosion of a metal tube generally referred to as a “liner”. However, the implosion velocity is not very high 70-100 km/s and the convergence is cylindrical (rather than spherical) making it more difficult to achieve the high temperatures and areal densities needed for ignition.

More Details

Experimental verification of the Magnetized Liner Inertial Fusion (MagLIF) concept

ICOPS/BEAMS 2014 - 41st IEEE International Conference on Plasma Science and the 20th International Conference on High-Power Particle Beams

Gomez, Matthew R.; Slutz, S.A.; Sefkow, Adam B.; Awe, T.J.; Chandler, Gordon A.; Cuneo, Michael E.; Geissel, Matthias; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Harvey-Thompson, Adam J.; Herrmann, Mark H.; Jennings, C.A.; Knapp, P.F.; Lamppa, Derek C.; Martin, M.R.; Mcbride, Ryan; Peterson, K.J.; Porter, J.L.; Rochau, G.A.; Rovang, Dean C.; Ruiz, Carlos L.; Schmit, Paul; Sinars, Daniel; Smith, Ian C.

Abstract not provided.

Temporal evolution of surface ripples on a finite plasma slab subject to the magneto-Rayleigh-Taylor instability

Physics of Plasmas

Weis, Matthew R.; Zhang, Peng; Lau, Yue Y.; Rittersdorf, Ian; Zier, Jacob; Gilgenbach, Ronald; Hess, Mark H.; Peterson, K.J.

Using the ideal magnetohydrodynamic model, we calculate the temporal evolution of initial ripples on the boundaries of a planar plasma slab that is subjected to the magneto-Rayleigh-Taylor instability. The plasma slab consists of three regions. We assume that in each region the plasma density is constant with an arbitrary value and the magnetic field is also constant with an arbitrary magnitude and an arbitrary direction parallel to the interfaces. Then, the instability may be driven by a combination of magnetic pressure and kinetic pressure. Thus the general dispersion relation is derived, together with the feedthrough factor between the two interfaces. The temporal evolution is constructed from the superposition of the eigenmodes. Those previously established results are recovered in the various limits. Numerical examples are given on the temporal evolution of ripples on the interfaces of the finite plasma slab.

More Details

Adaptive Beam Smoothing with Plasma-Pinholes for Laser-Entrance-Hole Transmission Studies

Geissel, Matthias; Awe, Thomas J.; Campbell, Edward M.; Gomez, Matthew R.; Harding, Eric H.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Kimmel, Mark; Lewis, Sean M.; Mcbride, Ryan; Peterson, K.J.; Schollmeier, Marius; Sefkow, Adam B.; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Stahoviak, John W.; Porter, John L.

Abstract not provided.

Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion

Physical Review Letters

Gomez, Matthew R.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Chandler, Gordon A.; Cuneo, Michael E.; Harvey-Thompson, Adam J.; Herrmann, Mark H.; Hess, Mark H.; Slutz, Stephen A.; Johns, Owen; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Robertson, G.K.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Sefkow, Adam B.; Smith, Ian C.; Stygar, William A.; Vesey, Roger A.; Sinars, Daniel; Hahn, Kelly; Hansen, Stephanie B.; Harding, Eric H.; Knapp, P.F.; Schmit, Paul

This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed axial magnetic field of 10 T is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA current with 100 ns rise time on the Z facility. Despite a predicted peak implosion velocity of only 70 km/s, the fuel reaches a stagnation temperature of approximately 3 keV, with Te ≈ Ti, and produces up to 2e12 thermonuclear DD neutrons. In this study, X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. The number of secondary deuterium-tritium neutrons observed was greater than 1010, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg/cm2.

More Details
Results 101–150 of 199
Results 101–150 of 199