Publications

Results 1–25 of 131

Search results

Jump to search filters

Increasing resilience with wastewater reuse

Nature Water

Klise, Katherine A.

Drinking water infrastructure in urban settings is increasingly affected by population growth and disruptions like extreme weather events. This study explores how the integration of direct wastewater reuse can help to maintain drinking water service when the system is compromised.

More Details

Modifications to Sandia's MDT and WNTR tools for ERMA

Eddy, John P.; Klise, Katherine A.; Hart, David B.

ERMA is leveraging Sandia’s Microgrid Design Toolkit (MDT) [1] and adding significant new features to it. Development of the MDT was primarily funded by the Department of Energy, Office of Electricity Microgrid Program with some significant support coming from the U.S. Marine Corps. The MDT is a software program that runs on a Microsoft Windows PC. It is an amalgamation of several other software capabilities developed at Sandia and subsequently specialized for the purpose of microgrid design. The software capabilities include the Technology Management Optimization (TMO) application for optimal trade-space exploration, the Microgrid Performance and Reliability Model (PRM) for simulation of microgrid operations, and the Microgrid Sizing Capability (MSC) for preliminary sizing studies of distributed energy resources in a microgrid.

More Details

Evaluating Manual Sampling Locations for Regulatory and Emergency Response

Journal of Water Resources Planning and Management

Haxton, Terranna; Klise, Katherine A.; Laky, Daniel; Murray, Regan; Laird, Carl D.; Burkhardt, Jonathan B.

Drinking water systems commonly use manual or grab sampling to monitor water quality, identify or confirm issues, and verify that corrective or emergency response actions have been effective. In this paper, the effectiveness of regulatory sampling locations for emergency response is explored. An optimization formulation based on the literature was used to identify manual sampling locations to maximize overall nodal coverage of the system. Results showed that sampling locations could be effective in confirming incidents for which they were not designed. When evaluating sampling locations optimized for emergency response against regulatory scenarios, the average performance was reduced by 3%-4%, while using optimized regulatory sampling locations for emergency response reduced performance by 7%-10%. Secondary constraints were also included in the formulation to ensure geographical and water age diversity with minimal impact on the performance. This work highlighted that regulatory sampling locations provide value in responding to an emergency for these networks.

More Details

Analysis of mobility data to build contact networks for COVID-19

PLoS ONE

Klise, Katherine A.; Beyeler, Walter E.; Finley, Patrick D.; Makvandi, Monear M.

As social distancing policies and recommendations went into effect in response to COVID-19, people made rapid changes to the places they visit. These changes are clearly seen in mobility data, which records foot traffic using location trackers in cell phones. While mobility data is often used to extract the number of customers that visit a particular business or business type, it is the frequency and duration of concurrent occupancy at those sites that governs transmission. Understanding the way people interact at different locations can help target policies and inform contact tracing and prevention strategies. This paper outlines methods to extract interactions from mobility data and build networks that can be used in epidemiological models. Several measures of interaction are extracted: interactions between people, the cumulative interactions for a single person, and cumulative interactions that occur at particular businesses. Network metrics are computed to identify structural trends which show clear changes based on the timing of stay-at-home orders. Measures of interaction and structural trends in the resulting networks can be used to better understand potential spreading events, the percent of interactions that can be classified as close contacts, and the impact of policy choices to control transmission.

More Details

Modeling efficient and equitable distribution of COVID-19 vaccines

Makvandi, Monear M.; Wallis, Laurie D.; West, Celine N.; Thelen, Haedi E.; Vanwinkle, Zane; Halkjaer-Knudsen, Vibeke N.; Laros, James H.; Beyeler, Walter E.; Klise, Katherine A.; Finley, Patrick D.

Producing and distributing COVID-19 vaccine during the pandemic is a major logistical challenge requiring careful planning and efficient execution. This report presents information on logistical, policy and technical issues relevant to rapidly fielding a COVID-19 vaccination program. For this study we (a) conducted literature review and subject matter expert elicitation to understand current vaccine manufacturing and distribution capabilities and vaccine allocation strategies, (b) designed a baseline vaccine distribution strategy and modeling strategy to provide insight into the potential for targeted distribution of limited initial vaccine supplies, and (c) developed parametric interfaces to enable vaccine distribution scenarios to be analyzed in depth with Sandias Adaptive Recovery Model that will allow us evaluate the additional sub- populations and alternative distribution scenarios from a public health benefit and associated economic disruption Principal issues, challenges, and complexities that complicate COVID-19 vaccine delivery identified in our literature and subject matter expert investigation include these items: The United States has not mounted an urgent nationwide vaccination campaign in recent history. The existing global manufacturing and distribution infrastructure are not able to produce enough vaccine for the population immediately. Vaccines, once available will be scarce resources. Prioritization for vaccine allocation will be built on existing distribution networks. Vaccine distribution may not have a universal impact on disease transmission and morbidity because of scarcity, priority population demographics, and underlying disease transmission rates. Considerations for designing a vaccine distribution strategy are discussed. A baseline distribution strategy is designed and tested using the Adaptive Recovery Model, which couples a deterministic compartmental epidemiological model and a stochastic network model. We show the impact of this vaccine distribution strategy on hospitalizations, mortality, and contact tracing requirements. This model can be used to quantitatively evaluate alternative distribution scenarios, guiding policy decisions as vaccine candidates are narrowed down.

More Details

Adaptive Recovery Model: Designing Systems for Testing Tracing and Vaccination to Support COVID-19 Recovery Planning

Beyeler, Walter E.; Laros, James H.; Klise, Katherine A.; Makvandi, Monear M.; Finley, Patrick D.

This report documents a new approach to designing disease control policies that allocate scarce testing, contact tracing, and vaccination resources to better control community transmission of COVID19 or similar diseases. The Adaptive Recovery Model (ARM) combines a deterministic compartmental disease model with a stochastic network disease propagation model to enable us to simulate COVID-19 community spread through the lens of two complementary modeling motifs. ARM contact networks are derived from cell-phone location data that have been anonymized and interpreted as individual arrivals to specic public locations. Modeling disease spread over these networks allows us to identify locations within communities conducive to rapid disease spread. ARM applies this model- and data-derived abstractions of community transmission to evaluate the effectiveness of disease control measures including targeted social distancing, contact tracing, testing and vaccination. The architecture of ARM provides a unique capacity to help decision makers understand how best to deploy scarce testing, tracing and vaccination resources to minimize disease-spread potential in a community. This document details the novel mathematical formulations underlying ARM, presents a dynamical stability analysis of the deterministic model components, a sensitivity analysis of control parameters and network structure, and summarizes a process for deriving contact networks from cell-phone location data. An example use case steps through applying ARM to evaluate three targeted social distancing policies using Bernalillo County, New Mexico as an exemplar test locale. This step-by-step analysis demonstrates how ARM can be used to measure the relative performance of competing public health policies. Initial scenario tests of ARM shows that ARMs design focus on resource utilization rather than simple incidence prediction can provide decision makers with additional quantitative guidance for managing ongoing public health emergencies and planning future responses.

More Details

Sensor Placement Optimization Software Applied to Site-Scale Methane-Emissions Monitoring

Journal of Environmental Engineering (United States)

Klise, Katherine A.; Nicholson, Bethany L.; Laird, Carl D.; Ravikumar, Arvind P.; Brandt, Adam R.

Advances in sensor technology have increased our ability to monitor a wide range of environments. However, even as the cost of sensors decline, only a limited number of sensors can be installed at any given site. The physical placement of sensors, along with the sensor technology and operating conditions, can have a large impact on our ability to adequately monitor environmental change. This paper introduces a new open-source Python package, called Chama, that determines optimal sensor placement and technology to improve a sensor network's detection capabilities. The methods are demonstrated using site-specific methane emission scenarios that capture uncertainty in wind conditions and emission characteristics. Mixed-integer linear programming formulations are used to determine sensor locations and detection thresholds that maximize detection of the emission scenarios. The optimized sensor networks consistently increase the ability to detect leaks, as compared to sensors placed near each potential emission source or along the perimeter of the site.

More Details

Uncertainty Analysis Framework for the Hospital Resource Supply Model for Covid-19

Beyeler, Walter E.; Frazier, Christopher R.; Krofcheck, Daniel J.; Swiler, Laura P.; Portone, Teresa P.; Klise, Katherine A.

In March and April of 2020 there was widespread concern about availability of medical resources required to treat Covid-19 patients who become seriously ill. A simulation model of supply management was developed to aid understanding of how to best manage available supplies and channel new production. Forecasted demands for critical therapeutic resources have tremendous uncertainty, largely due to uncertainties about the number and timing of patient arrivals. It is therefore essential to evaluate any process for managing supplies in view of this uncertainty. To support such evaluations, we developed a modeling framework that would allow an integrated assessment in the context of uncertainty quantification. At the time of writing there has been no need to execute this framework because adaptations of the medical system have been able to respond effectively to the outbreak. This report documents the framework and its implemented components should need later arise for its application.

More Details

The Grey Zone Test Range Integrated Urban Simulation Environment

Kelic, Andjelka; Beyeler, Walter E.; Mitchell, Roger M.; Bernard, Michael L.; Doyle, Casey L.; Rogers, Alisa N.; Frazier, Christopher R.; Gunda, Thushara G.; Klise, Katherine A.

Sandia National Laboratories is part of the government test and evaluation team for the Defense Advanced Research Projects Agency Collection and Monitoring via Planning for Active Situational Scenarios program. The program is designed to better understand competition in the area between peace and conventional conflict when adversary actions are subtle and difficult to detect. For the purposes of test and evaluation, Sandia conducted a range of activities for the program: creation of the Grey Zone Test Range; design of the data stream for a user experiment conducted with U.S. Indo-Pacific Command; design, implementation, and execution of the formal evaluation; and analysis and summary of the evaluation results. This report details Sandia's activities and provides additional information on the Grey Zone Test Range urban simulation environment developed to evaluate the performer technologies.

More Details

Facility Location Optimization Model for COVID-19 Resources

Klise, Katherine A.; Bynum, Michael L.

In response to anticipated resource shortfalls related to the treatment and testing of COVID-19, many communities are planning to build additional facilities to increase capacity. These facilities include field hospitals, testing centers, mobile manufacturing units, and distribution centers. In many cases, these facilities are intended to be temporary and are designed to meet an immediate need. When deciding where to place new facilities many factors need to be considered, including the feasibility of potential locations, existing resource availability, anticipated demand, and accessibility between patients and the new facility. In this project, a facility location optimization model was developed to integrate these key pieces of information to help decision makers identify the best place, or places, to build a facility to meet anticipated resource demands. The facility location optimization model uses the location of existing resources and the anticipated resource demand at each location to minimize the distance a patient must travel to get to the resource they need. The optimization formulation is presented below. The model was designed to operate at the county scale, where patients are grouped per county. This assumption can be modified to integrate other scales or include individual patients.

More Details
Results 1–25 of 131
Results 1–25 of 131