Publications

74 Results

Search results

Jump to search filters

Downhole Sensing and Event-Driven Sensor Fusion for Depth-of-Cut Based Autonomous Fault Response and Drilling Optimization

Boots, Byron; Sacks, Jacob; Choi, Kevin; Greenhill, Kathryn; Mazumdar, Anirban; Buerger, Stephen P.; Su, Jiann-Cherng

Achieving robust and efficient drilling is a critical part of reducing the cost of geothermal energy exploration and extraction. Drilling performance is often evaluated using one or more of three key metrics: depth of cut (DOC), rate of penetration (ROP), and mechanical specific energy (MSE). All three of these quantities are related to each other. DOC refers to the depth a bit penetrates into rock during drilling. This is an important quantity for estimating bit behavior. ROP is the simply the DOC multiplied by the rotational rate, and represents how quickly the drill bit is advancing through the ground. ROP is often the parameter used for drilling control and optimization. Finally, MSE provides insight into drilling efficiency and rock type. MSE calculations rely on ROP, drilling force, and drilling torque. Surface-based sensors at the top of the drill are often used to measure all these quantities. However, top-hole measurements can deviate substantially from the behavior at the bit due to lag, vibrations, and friction. Therefore, relying only on top-hole information can lead to suboptimal drilling control. In this work, we describe recent progress towards estimating ROP, DOC, and MSE using down-hole sensing. We assume down-hole measurements of torque, weight-on-bit (WOB). Our hypothesis is that these measurements can provide more rapid and accurate measures of drilling performance. We show how a multi-layer perceptron (MLP) machine learning algorithm can provide rapid and accurate performance when evaluated on experimental data taken from Sandia’s Hard Rock Drilling Facility. In addition, we implement our algorithms on an embedded system intended to emulate a bottom-hole-assembly for sensing and estimation. Our experimental results show that DOC can be estimated accurately and in real-time. These estimates when combined with measurements for rotary speed, torque, and force can provide improved estimates for ROP and MSE. These results have the potential to enable better drilling assessment, improved control, and extended component lifetimes.

More Details

Sandia and Ditch Witch Technology Commercialization Fund Integral Motor and Percussive Hammer

Gunsaulis, Floyd; Sharp, Richard; Su, Jiann-Cherng

This report captures the results of development and testing of a integral downhole motor and percussive hammer used for drilling in near-surface hard rock formations. The work was funded through the DOE Office of Technology Transitions Technology Commercialization Fund. It was a collaboration between Sandia National Labs and The Charles Machine Works (aka Ditch Witch). In the collaboration, Sandia developed a pneumatic motor derived from an indexing tool used in other drilling applications, and Ditch Witch developed the bearing pack tied to the output shaft of the motor as well as the angled beacon housing used for directional control.

More Details

Thermopile Energy Harvesting for Subsurface Wellbore Sensors (Final Report)

Bryan, C.R.; Dewers, Thomas; Heath, Jason E.; Koripella, Chowdary R.; Su, Jiann-Cherng; Melad, Aaron D.

Robust in situ power harvesting underlies all efforts to enable downhole autonomous sensors for real-time and long-term monitoring of CO2 plume movement and permeance, wellbore health, and induced seismicity. This project evaluated the potential use of downhole thermopile arrays, known as thermoelectric generators (TEGs), as power sources to charge sensors for in situ real-time, long-term data capture and transmission. Real-time downhole monitoring will enable “Big Data” techniques and machine learning, using massive amounts of continuous data from embedded sensors, to quantify short- and long-term stability and safety of enhanced oil recovery and/or commercial-scale geologic CO2 storage. This project evaluated possible placement of the TEGs at two different wellbore locations: on the outside of the casing; or on the production tubing. TEGs convert heat flux to electrical power, and in the borehole environment, would convert heat flux into or out of the borehole into power for downhole sensors. Such heat flux would be driven by pumping of cold or hot fluids into the borehole—for instance, injecting supercritical CO2—creating a thermal pulse that could power the downhole sensors. Hence, wireless power generation could be accomplished with in situ TEG energy harvesting. This final report summarizes the project’s efforts that accomplished the creation of a fully operational thermopile field unit, including selection of materials, laboratory benchtop experiments and thermal-hydrologic modeling for design and optimization of the field-scale power generation test unit. Finally, the report describes the field unit that has been built and presents results of performance and survivability testing. The performance and survivability testing evaluated the following: 1) downhole power generation in response to a thermal gradient produced by pumping a heated fluid down a borehole and through the field unit; and 2) component survivability and operation at elevated temperature and pressure conditions representative of field conditions. The performance and survivability testing show that TEG arrays are viable for generating ample energy to power downhole sensors, although it is important to note that developing or connecting to sensors was beyond the scope of this project. This project’s accomplishments thus traversed from a low Technical Readiness Level (TRL) on fundamental concepts of the application and modeling to TRL-5 via testing of the fully integrated field unit for power generation in relevant environments. A fully issued United States Patent covers the wellbore power harvesting technology and applications developed by this project.

More Details

Chloride-based Wireline Tool for Measuring Feed Zone Inflow in Enhanced Geothermal Systems (EGS) Wells: Experimental, Numerical, and Data-driven Updates

Transactions - Geothermal Resources Council

Sausan, Sarah; Judawisastra, Luthfan H.; Su, Jiann-Cherng; Horne, Roland

This paper presents the ongoing development of a wireline tool designed to detect and quantify inflows from feed zones in geothermal wells based on measurement of chloride. The tool aims to characterize stimulation events in Enhanced Geothermal Systems (EGS) wells at Utah FORGE (Frontier Observatory for Research in Geothermal Energy) and other EGS sites. Successful development of the chloride tool would greatly improve production monitoring of the fractures and enable proactive prescription of additional stimulations over the life of the field, thus helping to improve EGS commercial feasibility. The recent development of the chloride tool involves an Ion Specific Electrodes (ISE) probe and a reference electrode, assembled through a labor-intensive process, and designed to withstand downhole conditions for field deployment. Through laboratory experiments and numerical simulations, the tool demonstrated efficacy in identifying changes in chloride concentration, indicating its utility in feed zone detection. However, the impact of impedance on voltage measurements and discrepancies between laboratory and simulation results presented opportunities for further refinement. Notably, simulation results consistently underestimated actual chloride concentration by 30-40%, suggesting the need for compensatory calibration. Comparisons between different simulation software indicated that ANSYS was more accurate in replicating key features observed in laboratory experiments. Moreover, a Machine Learning (ML) approach was used to improve feed zone location detection and inflow rate measurement, utilizing Random Forest and Light Gradient Boosting Machine (LGBM) models, which delivered high performance scores. Thus, the chloride tool's recent development and integration with machine learning approaches offer promising advancements in feed zone identification and quantification.

More Details

The Amplify Monitoring Team: Initial Design, Development, and Deployment of Seismic Monitoring Systems for In-Field and Near-Field EGS Well Stimulation

Transactions - Geothermal Resources Council

Robertson, Michelle; Su, Jiann-Cherng; Kaven, J.O.; Hopp, Chet; Hirakawa, Evan; Gasperikova, Erika; Dobson, Patrick; Schwering, Paul C.; Nakata, Nori; Majer, Ernest L.

The DOE GeoVision study identified that Enhanced Geothermal Systems (EGS) resources have the potential to provide a significant contribution toward achieving the goal of converting the U.S. electricity system to 100% clean energy over the next few decades. To further the implementation of commercial EGS development, DOE's Geothermal Technologies Office (GTO) initiated the Wells of Opportunity (WOO) Amplify program, where unproductive wells in selected geothermal fields are to be stimulated using EGS technologies, resulting in increased power production from these resources. As part of the WOO-Amplify project, GTO assembled the Amplify Monitoring Team (AMT), whose role is to provide in-field and near-field seismic monitoring design, deployment and data analysis for stimulations under the WOO-Amplify initiative. This team, consisting of scientists and engineers from Lawrence Berkeley National Laboratory (LBNL), Sandia National Laboratories (SNL), and the US Geological Survey (USGS), is working with WOO-Amplify EGS Operators in Nevada to develop and deploy optimized seismic monitoring systems at four geothermal fields where WOO-Amplify well stimulations are planned: Don A. Campbell, Tungsten Mountain and Jersey Valley operated by Ormat Technologies, and Patua operated by Cyrq Patua Acquisition Company LLC. Using geologic and geophysical field data provided by the WOO-Amplify teams, the focus of the AMT is to develop advanced simulation and modeling techniques, design targeted seismic monitoring arrays, develop innovative and cost-effective methodologies for drilling seismic monitoring boreholes, deploy effective seismic instrumentation, and facilitate the use of microseismic data to monitor well stimulation and flow within the geothermal reservoir. Realtime seismic data from the four WOO-Amplify sites will be streamed to a publicly accessible Amplify Monitoring website. AMT's advanced simulations and template matching techniques applied during pre-stimulation phases can help improve understanding of potential seismic hazard and inform the Operator's Induced Seismicity Mitigation Protocol (ISMP). Over the next two years, AMT will be drilling, instrumenting, and recording seismic data at the WOO-Amplify field sites, telemetering the seismic waveform data to AMT's central processing system and providing the processed location data to the WOO Amplify Operator teams. These data and monitoring systems will be critical for effective monitoring of the effects of planned well stimulation and extended flow tests during the next stage of the WOO-Amplify project.

More Details

Auto Indexer for Percussive Hammers Final Report

Su, Jiann-Cherng; Wright, Elton K.

Geothermal energy has been underutilized in the U.S., primarily due to the high cost of drilling in the harsh environments encountered during the development of geothermal resources. Drilling depths can approach 5,000 m with temperatures reaching 170 C. In situ geothermal fluids are up to ten times more saline than seawater and highly corrosive, and hard rock formations often exceed 240 MPa compressive strength. This combination of extreme conditions pushes the limits of most conventional drilling equipment. Furthermore, enhanced geothermal systems are expected to reach depths of 10,000 m and temperatures more than 300 °C. To address these drilling challenges, Sandia developed a proof-of-concept tool called the auto indexer under an annual operating plan task funded by the Geothermal Technologies Program (GTP) of the U.S. Department of Energy Geothermal Technologies Office. The auto indexer is a relatively simple, elastomer-free motor that was shown previously to be compatible with pneumatic hammers in bench-top testing. Pneumatic hammers can improve penetration rates and potentially reduce drilling costs when deployed in appropriate conditions. The current effort, also funded by DOE GTP, increased the technology readiness level of the auto indexer, producing a scaled prototype for drilling larger diameter boreholes using pneumatic hammers. The results presented herein include design details, modeling and simulation results, and testing results, as well as background on percussive hammers and downhole rotation.

More Details

A Modular Mechanism for Downhole Weight-on-Bit and Torque Reaction in Small Diameter Boreholes

Journal of Energy Resources Technology, Transactions of the ASME

Mazumdar, Anirban; Buerger, Stephen P.; Foris, Adam J.; Su, Jiann-Cherng

Drilling systems that use downhole rotation must react torque either through the drill-string or near the motor to achieve effective drilling performance. Problems with drill-string loading such as buckling, friction, and twist become more severe as hole diameter decreases. Therefore, for small holes, reacting torque downhole without interfering with the application of weight-on-bit, is preferred. In this paper, we present a novel mechanism that enables effective and controllable downhole weight on bit transmission and torque reaction. This scalable design achieves its unique performance through four key features: (1) mechanical advantage based on geometry, (2) direction dependent behavior using rolling and sliding contact, (3) modular scalability by combining modules in series, and (4) torque reaction and weight on bit that are proportional to applied axial force. As a result, simple mechanical devices can be used to react large torques while allowing controlled force to be transmitted to the drill bit. We outline our design, provide theoretical predictions of performance, and validate the results using full-scale testing. The experimental results include laboratory studies as well as limited field testing using a percussive hammer. These results demonstrate effective torque reaction, axial force transmission, favorable scaling with multiple modules, and predictable performance that is proportional to applied force.

More Details

Direct Subsurface Measurements through Precise Micro Drilling

Su, Jiann-Cherng; Bettin, Giorgia; Buerger, Stephen P.; Rittikaidachar, Michal; Hobart, Clinton; Slightam, Jonathon E.; Mcbrayer, Kepra L.; Gonzalez, Levi M.; Pope, Joseph S.; Foris, Adam J.; Bruss, Kathryn; Kim, Raymond; Mazumdar, Anirban

Wellbore integrity is a significant problem in the U.S. and worldwide, which has serious adverse environmental and energy security consequences. Wells are constructed with a cement barrier designed to last about 50 years. Indirect measurements and models are commonly used to identify wellbore damage and leakage, often producing subjective and even erroneous results. The research presented herein focuses on new technologies to improve monitoring and detection of wellbore failures (leaks) by developing a multi-step machine learning approach to localize two types of thermal defects within a wellbore model, a prototype mechatronic system for automatically drilling small diameter holes of arbitrary depth to monitor the integrity of oil and gas wells in situ, and benchtop testing and analyses to support the development of an autonomous real-time diagnostic tool to enable sensor emplacement for monitoring wellbore integrity. Each technology was supported by experimental results. This research has provided tools to aid in the detection of wellbore leaks and significantly enhanced our understanding of the interaction between small-hole drilling and wellbore materials.

More Details

Evaluation of Microhole Drilling Technology for Geothermal Exploration, Assessment, And Monitoring

Mazumdar, Anirban; Buerger, Stephen P.; Foris, Adam J.; Faircloth, Brian; Kaspereit, Dennis; Su, Jiann-Cherng

One of the greatest barriers to geothermal energy expansion is the high cost of drilling during exploration, assessment, and monitoring. Microhole drilling technology—small-diameter 2–4 in. (~5.1–10.2 cm) boreholes—is one potential low-cost alternative for monitoring and evaluating bores. However, delivering high weight-on-bit (WOB), high torque rotational horsepower to a conventional drill bit does not scale down to the hole sizes needed to realize the cost savings. Coiled tube drilling technology is one solution, but these systems are limited by the torque resistance of the coil system, helical buckling in compression, and most of all, WOB management. The evaluation presented herein will: (i) evaluate the technical and economic feasibility of low WOB technologies (specifically, a percussive hammer and a laser-mechanical system), (ii) develop downhole rotational solutions for low WOB drilling, (iii) provide specifications for a low WOB microhole drilling system, (iv) implement WOB control for low WOB drilling, and (v) evaluate and test low WOB drilling technologies.

More Details

Machine learning methods for estimating down-hole depth of cut

Transactions - Geothermal Resources Council

Sacks, Jacob; Choi, Kevin; Bruss, Kathryn; Su, Jiann-Cherng; Buerger, Stephen P.; Mazumdar, Anirban; Boots, Byron

Depth of cut (DOC) refers to the depth a bit penetrates into the rock during drilling. This is an important quantity for estimating drilling performance. In general, DOC is determined by dividing the rate of penetration (ROP) by the rotational speed. Surface based sensors at the top of the drill string are used to determine both ROP and rotational speed. However, ROP measurements using top-hole sensors are noisy and often require taking a derivative. Filtering reduces the update rate, and both top-hole linear and angular velocity can be delayed relative to downhole behavior. In this work, we describe recent progress towards estimating ROP and DOC using down-hole sensing. We assume downhole measurements of torque, weight-on-bit (WOB), and rotational speed and anticipate that these measurements are physically realizable. Our hypothesis is that these measurements can provide more rapid and accurate measures of drilling performance. We examine a range of machine learning techniques for estimating ROP and DOC based on this local sensing paradigm. We show how machine learning can provide rapid and accurate performance when evaluated on experimental data taken from Sandia's Hard Rock Drilling Facility. These results have the potential to enable better drilling assessment, improved control, and extended component life-times.

More Details

Evaluation of Microhole drilling technology for geothermal exploration, assessment, and monitoring

Transactions - Geothermal Resources Council

Su, Jiann-Cherng; Mazumdar, Anirban; Buerger, Stephen P.; Foris, Adam J.; Faircloth, Brian

The well documented promise of microholes has not yet matched expectations. A fundamental issue is that delivering high weight-on-bit (WOB), high torque rotational horsepower to a conventional drill bit does not scale down to the hole sizes necessary to realize the envisioned cost savings. Prior work has focused on miniaturizing the various systems used in conventional drilling technologies, such as motors, steering systems, mud handling and logging tools, and coiled tubing drilling units. As smaller diameters are targeted for these low WOB drilling technologies, several associated sets of challenges arise. For example, energy transfer efficiency in small diameter percussive hammers is different than conventional hammers. Finding adequate methods of generating rotation at the bit are also more difficult. A low weight-on-bit microhole drilling system was proposed, conceived, and tested on a limited scale. The utility of a microhole was quantified using flow analyses to establish bounds for usable microholes. Two low weight-on-bit rock reduction techniques were evaluated and developed, including a low technology readiness level concept in the laser-assisted mechanical drill and a modified commercial percussive hammer. Supporting equipment, including downhole rotation and a drill string twist reaction tool, were developed to enable wireline deployment of a drilling assembly. Although the various subsystems were tested and shown to work well individually in a laboratory environment, there is still room for improvement before the microhole drilling system is ready to be deployed. Ruggedizing the various components will be key, as well as having additional capacity in a conveyance system to provide additional capacity for pullback and deployment.

More Details

Automated drilling of high aspect ratio, small diameter holes in remote, confined spaces

ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)

Rittikaidachar, Michal; Hobart, Clinton; Slightam, Jonathon E.; Su, Jiann-Cherng; Buerger, Stephen P.

We describe the development and benchtop prototype performance characterization of a mechatronic system for automatically drilling small diameter holes of arbitrary depth, to enable monitoring the integrity of oil and gas wells in situ. The precise drilling of very small diameter, high aspect ratio holes, particularly in dimensionally constrained spaces, presents several challenges including bit buckling, limited torsional stiffness, chip clearing, and limited space for the bit and mechanism. We describe a compact mechanism that overcomes these issues by minimizing the unsupported drill bit length throughout the process, enabling the bit to be progressively fed from a chuck as depth increases. When used with flexible drill bits, holes of arbitrary depth and aspect ratio may be drilled orthogonal to the wellbore. The mechanism and a conventional drilling system are tested in deep hole drilling operation. The experimental results show that the system operates as intended and achieves holes with substantially greater aspect ratios than conventional methods with very long drill bits. The mechanism enabled successful drilling of a 1/16" diameter hole to a depth of 9", a ratio of 144:1. Dysfunctions prevented drilling of the same hole using conventional methods.

More Details

Autonomous control of pneumatically-powered percussive drilling through highly layered formations

Proceedings of the American Control Conference

Mazumdar, Anirban; Su, Jiann-Cherng; Spencer, Steven J.; Buerger, Stephen P.

The ability to rapidly drill through diverse, layered materials can greatly enhance future mine-rescue operations, energy exploration, and underground operations. Pneumatic-percussive drilling holds great promise in this area due to its ability to penetrate very hard materials and potential for portability. Currently such systems require expert operators who require extensive training. We envision future applications where first responders who lack such training can still respond rapidly and safely perform operations. Automated techniques can reduce the dependence on expert operators while increasing efficiency and safety. However, current progress in this area is restricted by the difficulty controlling such systems and the complexity of modeling percussive rock-bit interactions. In this work we develop and experimentally validate a novel intelligent percussive drilling architecture that is tailored to autonomously operate in diverse, layered materials. Our approach combines low-level feedback control, machine learning-based material classification, and on-line optimization. Our experimental results demonstrate the effectiveness of this approach and illustrate the performance benefits over conventional methods.

More Details

Estimation and control for efficient autonomous drilling through layered materials

Proceedings of the American Control Conference

Spencer, Steven J.; Mazumdar, Anirban; Su, Jiann-Cherng; Foris, Adam J.; Buerger, Stephen P.

Drilling is a repetitive, dangerous and costly process and a strong candidate for automation. We describe a method for autonomously controlling a rotary drilling process as it transitions through multiple materials with very different dynamics. This approach classifies the drilling medium based on real-time measurements and comparison to prior drilling data, and can identify the material type, drilling region, and approximately optimal set-point based on data from as few as one operating condition. The controller uses these set-points as initial conditions, and then conducts an optimal search to maximize performance, e.g. by minimizing mechanical specific energy. The control architecture is described, and the material estimation process is detailed. The results of experiments that implement autonomous drilling through a layered concrete and granite sample are discussed.

More Details

DE-FOA-EE0005502 Advanced Percussive Drilling Technology for Geothermal Exploration and Development Phase II Report

Su, Jiann-Cherng; Raymond, David W.; Prasad, Somuri V.

Percussive hammers are a promising advance in drilling technology for geothermal since they rely upon rock reduction mechanisms that are well-suited for use in the hard, brittle rock characteristic of geothermal formations. The project research approach and work plan includes a critical path to development of a high-temperature (HT) percussive hammer using a two- phase approach. The work completed in Phase I of the project demonstrated the viability of percussive hammers and that solutions to technical challenges in design, material technology, and performance are likely to be resolved. Work completed in Phase II focused on testing the findings from Phase I and evaluating performance of the materials and designs at high- operating temperatures. A high-operating temperature (HOT) drilling facility was designed, built, and used to test the performance of the DTH under extreme conditions. Results from the testing indicate that a high-temperature capable hammer can be developed and is a viable alternative for user in the driller's toolbox.

More Details

Advanced percussive drilling technology for geothermal exploration and development DE-FOA-EE0005502

Transactions - Geothermal Resources Council

Su, Jiann-Cherng; Raymond, David W.; Prasad, Somuri V.

Percussive hammers are a promising advance in drilling technology for geothermal since they rely upon rock reduction mechanisms that are well-suited for use in the hard, brittle rock characteristic of geothermal formations. Also known as down-the-hole (DTH) hammers, they are also compatible with low-density fluids that are often used for geothermal drilling. Experience in mining and oil and gas drilling has demonstrated their utility for penetrating hard rock. One limitation to more wide-scale deployment is the ability of the tools to operate at high temperatures (∼300°C) due to elastomers used in the construction and the lubrication required for operation. As part of a United States Department of Energy Funding Opportunity Announcement award, Atlas Copco was tasked with developing a high-temperature DTH capable of being used in geothermal environments. A full-scale development effort including design, build, and testing was pursued for the project. This report summarizes the results of the percussive hammer development efforts between Atlas-Copco Secoroc and Sandia National Labs as part of DE-FOA-EE0005502. Certain design details have been omitted due to the proprietary nature of the information.

More Details

Conceptual design for waste packaging and emplacement in deep boreholes

ANS IHLRWM 2017 - 16th International High-Level Radioactive Waste Management Conference: Creating a Safe and Secure Energy Future for Generations to Come - Driving Toward Long-Term Storage and Disposal

Hardin, Ernest; Peretz, Fred; Adeniyi, Abiodun; Nogradi, Paul; Su, Jiann-Cherng; Kalinina, Elena A.

The Deep Borehole Field Test will include demonstration of the emplacement and retrieval of test waste packages (containing no waste) in a 5 km deep borehole drilled into the crystalline basement. A conceptual design for packaging, surface handling and transfer equipment, and borehole emplacement was developed in anticipation of the demonstration project. Test packages are designed to withstand external pressure greater than 65 MPa, at temperature up to 170°C. Two packaging concepts were developed: 1) flasktype for granular waste, and 2) internal semi-flush type for waste that is pre-canistered in cylindrical containers. Oilfield casing materials and sealing connections would be selected giving a safety factor of 2.0 against yield. Packages would have threaded fittings top and bottom for attachment of impact limiters and latch fittings. Packages would be lowered one-at-a-time into the borehole on electric wireline. This offers important safety advantages over using drill pipe or coiled tubing to lower waste packages, because it avoids the possibility of dropping a heavy assembly in the borehole. An electromechanical latch would release each package, or reconnect for retrieval. Frequency of waste package delivery to a disposal site could be the effective limit on emplacement throughput. Packages would be delivered in a shielded Type B transportation cask and transferred to a shielded, doubleended transfer cask on site. The transfer cask would be upended over the borehole and secured to the wellhead. The transfer cask would become an integral part of the pressure control envelope for well pressure control. Blowout preventers can be incorporated as needed for regulatory compliance. Operational safety has been assessed with respect to normal operations, and off-normal events that could cause package breach in the borehole. Worker exposures can be limited by using standard industry practices for nuclear material handling. The waste packages would effectively be robust pressure vessels that will not breach if dropped during surface handling. The possibility of package breach in the borehole during emplacement can be effectively eliminated using impact limiters on every package.

More Details

Using Muons to Image the Subsurface

Bonal, Nedra; Cashion, Avery T.; Cieslewski, Grzegorz; Dorsey, Daniel J.; Foris, Adam J.; Miller, Timothy J.; Roberts, Barry L.; Su, Jiann-Cherng; Dreesen, Wendi; Green, J.A.; Schwellenbach, David

Muons are subatomic particles that can penetrate the earth’s crust several kilometers and may be useful for subsurface characterization. The absorption rate of muons depends on the density of the materials through which they pass. Muons are more sensitive to density variation than other phenomena, including gravity, making them beneficial for subsurface investigation. Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and the detector, much like a CAT scan. Currently, muon tomography can resolve features to the sub-meter scale.

More Details

Field Test to Evaluate Deep Borehole Disposal

RadWaste Solutions

Hardin, Ernest; Brady, Patrick V.; Clark, Andrew J.; Cochran, John R.; Kuhlman, Kristopher L.; Mackinnon, Robert J.; Sassani, David C.; Su, Jiann-Cherng; Jenni, Karen

The U.S. Department of Energy (DOE) has embarked on the Deep Borehole Field Test (DBFT), which will investigate whether conditions suitable for disposal of radioactive waste can be found at a depth of up to 5 km in the earth’s crust. As planned, the DBFT will demonstrate drilling and construction of two boreholes, one for initial scientific characterization, and the other at a larger diameter such as could be appropriate for waste disposal (the DBFT will not involve radioactive waste). A wide range of geoscience activities is planned for the Characterization Borehole, and an engineering demonstration of test package emplacement and retrieval is planned for the larger Field Test Borehole. Characterization activities will focus on measurements and samples that are important for evaluating the long-term isolation capability of the Deep Borehole Disposal (DBD) concept. Engineering demonstration activities will focus on providing data to evaluate the concept’s operational safety and practicality. Procurement of a scientifically acceptable DBFT site and a site management contractor is now underway. The concept of deep borehole disposal (DBD) for radioactive wastes is not new. It was considered by the National Academy of Science (NAS 1957) for liquid waste, studied in the 1980’s in the U.S. (Woodward–Clyde 1983), and has been evaluated by European waste disposal R&D programs in the past few decades (for example, Grundfelt and Crawford 2014; Grundfelt 2010). Deep injection of wastewater including hazardous wastes is ongoing in the U.S. and regulated by the Environmental Protection Agency (EPA 2001). The DBFT is being conducted with a view to use the DBD concept for future disposal of smaller-quantity, DOE-managed wastes from nuclear weapons production (i.e., Cs/Sr capsules and granular solid wastes). However, the concept may also have broader applicability for nations that have a need to dispose of limited amounts of spent fuel from nuclear power reactors. For such nations the cost for disposing of volumetrically limited waste streams could be lower than mined geologic repositories.

More Details

Active Suppression of Drilling System Vibrations For Deep Drilling

Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen P.; Cashion, Avery T.; Mesh, Mikhail; Radigan, William T.; Su, Jiann-Cherng

The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

More Details

Conceptual waste packaging options for deep borehole disposal

Su, Jiann-Cherng; Hardin, Ernest

This report presents four concepts for packaging of radioactive waste for disposal in deep boreholes. Two of these are reference-size packages (11 inch outer diameter) and two are smaller (5 inch) for disposal of Cs/Sr capsules. All four have an assumed length of approximately 18.5 feet, which allows the internal length of the waste volume to be 16.4 feet. However, package length and volume can be scaled by changing the length of the middle, tubular section. The materials proposed for use are low-alloy steels, commonly used in the oil-and-gas industry. Threaded connections between packages, and internal threads used to seal the waste cavity, are common oilfield types. Two types of fill ports are proposed: flask-type and internal-flush. All four package design concepts would withstand hydrostatic pressure of 9,600 psi, with factor safety 2.0. The combined loading condition includes axial tension and compression from the weight of a string or stack of packages in the disposal borehole, either during lower and emplacement of a string, or after stacking of multiple packages emplaced singly. Combined loading also includes bending that may occur during emplacement, particularly for a string of packages threaded together. Flask-type packages would be fabricated and heat-treated, if necessary, before loading waste. The fill port would be narrower than the waste cavity inner diameter, so the flask type is suitable for directly loading bulk granular waste, or loading slim waste canisters (e.g., containing Cs/Sr capsules) that fit through the port. The fill port would be sealed with a tapered, threaded plug, with a welded cover plate (welded after loading). Threaded connections between packages and between packages and a drill string, would be standard drill pipe threads. The internal flush packaging concepts would use semi-flush oilfield tubing, which is internally flush but has a slight external upset at the joints. This type of tubing can be obtained with premium, low-profile threaded connections at each end. The internal-flush design would be suitable for loading waste that arrives from the originating site in weld-sealed, cylindrical canisters. Internal, tapered plugs with sealing filet welds would seal the tubing at each end. The taper would be precisely machined onto both the tubing and the plug, producing a metal-metal sealing surface that is compressed as the package is subjected to hydrostatic pressure. The lower plug would be welded in place before loading, while the upper plug would be placed and welded after loading. Conceptual Waste Packaging Options for Deep Borehole Disposal July 30, 2015 iv Threaded connections between packages would allow emplacement singly or in strings screwed together at the disposal site. For emplacement on a drill string the drill pipe would be connected directly into the top package of a string (using an adapter sub to mate with premium semi-flush tubing threads). Alternatively, for wireline emplacement the same package designs could be emplaced singly using a sub with wireline latch, on the upper end. Threaded connections on the bottom of the lowermost package would allow attachment of a crush box, instrumentation, etc.

More Details

Development of a Mine Rescue Drilling System (MRDS)

Knudsen, Steven D.; Broome, Scott T.; Su, Jiann-Cherng; Blankenship, Douglas A.

Sandia National Laboratories (Sandia) has a long history in developing compact, mobile, very high-speed drilling systems and this technology could be applied to increasing the rate at which boreholes are drilled during a mine accident response. The present study reviews current technical approaches, primarily based on technology developed under other programs, analyzes mine rescue specific requirements to develop a conceptual mine rescue drilling approach, and finally, proposes development of a phased mine rescue drilling system (MRDS) that accomplishes (1) development of rapid drilling MRDS equipment; (2) structuring improved web communication through the Mine Safety & Health Administration (MSHA) web site; (3) development of an improved protocol for employment of existing drilling technology in emergencies; (4) deployment of advanced technologies to complement mine rescue drilling operations during emergency events; and (5) preliminary discussion of potential future technology development of specialized MRDS equipment. This phased approach allows for rapid fielding of a basic system for improved rescue drilling, with the ability to improve the system over time at a reasonable cost.

More Details

Quantification of uncertainty in machining operations for on-machine acceptance

Tran, Hy; Su, Jiann-Cherng; Claudet, Andre

Manufactured parts are designed with acceptance tolerances, i.e. deviations from ideal design conditions, due to unavoidable errors in the manufacturing process. It is necessary to measure and evaluate the manufactured part, compared to the nominal design, to determine whether the part meets design specifications. The scope of this research project is dimensional acceptance of machined parts; specifically, parts machined using numerically controlled (NC, or also CNC for Computer Numerically Controlled) machines. In the design/build/accept cycle, the designer will specify both a nominal value, and an acceptable tolerance. As part of the typical design/build/accept business practice, it is required to verify that the part did meet acceptable values prior to acceptance. Manufacturing cost must include not only raw materials and added labor, but also the cost of ensuring conformance to specifications. Ensuring conformance is a substantial portion of the cost of manufacturing. In this project, the costs of measurements were approximately 50% of the cost of the machined part. In production, cost of measurement would be smaller, but still a substantial proportion of manufacturing cost. The results of this research project will point to a science-based approach to reducing the cost of ensuring conformance to specifications. The approach that we take is to determine, a priori, how well a CNC machine can manufacture a particular geometry from stock. Based on the knowledge of the manufacturing process, we are then able to decide features which need further measurements from features which can be accepted 'as is' from the CNC. By calibration of the machine tool, and establishing a machining accuracy ratio, we can validate the ability of CNC to fabricate to a particular level of tolerance. This will eliminate the costs of checking for conformance for relatively large tolerances.

More Details
74 Results
74 Results