Publications

Results 26–32 of 32

Search results

Jump to search filters

An elastomeric insole for 3-axis ground reaction force measurement

Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics

Lincoln, Lucas S.; Bamberg, Stacy J.Morris; Parsons, Erin; Salisbury, Curt M.; Wheeler, Jason W.

Measurement of the ground reaction force vector is important in clinical gait analysis and biomechanics research, for example to enable inverse dynamic calculations. Instrumented insoles allow biomechanical data to be collected outside of the motion analysis laboratory in many environments. However, current insole-based approaches typically measure only the vertical component of the reaction force and the plantar center of pressure. This work describes the development and evaluation of a silicone insole capable of measuring the complete three dimensional reaction force vector. The insole is optically based and low-cost with no complex manufacturing requirements. Accuracy over five nominal gait trails is shown to be on the order of 10% of the force range, with mean errors of 10.7 N in the shear directions and 68.1 N in normal. The insole can provide a simple mobile platform that allows kinetic gait data to be collected in many environments while minimally affecting the wearer's gait. © 2012 IEEE.

More Details

Portable, chronic neural interface system design for sensory augmentation

Proceedings of the 3rd International IEEE EMBS Conference on Neural Engineering

Olsson, Roy H.; Wojciechowski, Kenneth W.; Yepez, Esteban Y.; Novick, David K.; Peterson, K.A.; Turner, Timothy S.; Wheeler, Jason W.; Rohrer, Brandon R.; Kholwadwala, Deepesh K.

While existing work in neural interfaces is largely geared toward the restoration of lost function in amputees or victims of neurological injuries, similar technology may also facilitate augmentation of healthy subjects. One example is the potential to learn a new, unnatural sense through a neural interface. The use of neural interfaces in healthy subjects would require an even greater level of safety and convenience than in disabled subjects, including reliable, robust bidirectional implants with highly-portable components outside the skin. We present our progress to date in the development of a bidirectional neural interface system intended for completely untethered use. The system consists of a wireless stimulating and recording peripheral nerve implant powered by a rechargeable battery, and a wearable package that communicates wirelessly both with the implant and with a computer or a network of independent sensor nodes. Once validated, such a system could permit the exploration of increasingly realistic use of neural interfaces both for restoration and for augmentation. © 2007 IEEE.

More Details
Results 26–32 of 32
Results 26–32 of 32