Sort by Date
Sort by Title
Standard Format
Show Abstracts
As Citations (APA)
Search results
Jump to search filters
Reports on Progress in Physics
Martin, James E.
In this review we discuss recent research on driving self assembly of magnetic particle suspensions subjected to alternating magnetic fields. The variety of structures and effects that can be induced in such systems is remarkably broad due to the large number of variables involved. The alternating field can be uniaxial, biaxial or triaxial, the particles can be spherical or anisometric, and the suspension can be dispersed throughout a volume or confined to a soft interface. In the simplest case the field drives the static or quasi-static assembly of unusual particle structures, such as sheets, networks and open-cell foams. More complex, emergent collective behaviors evolve in systems that can follow the time-dependent field vector. In these cases energy is continuously injected into the system and striking °ow patterns and structures can arise. In fluid volumes these include the formation of advection and vortex lattices. At air-liquid and liquid-liquid interfaces striking dynamic particle assemblies emerge due to the particle-mediated coupling of the applied field to surface excitations. These out-of-equilibrium interface assemblies exhibit a number of remarkable phenomena, including self-propulsion and surface mixing. In addition to discussing various methods of driven self assembly in magnetic suspensions, some of the remarkable properties of these novel materials are described.
Soft Matter
Solis, Kyle J. ; Martin, James E.
We demonstrate the ability to change the thermal conductivity of a magnetic platelet suspension from insulating to conducting by using either uniaxial or multiaxial ac magnetic fields to control the suspension structure and dynamics. The equivalent thermal conductivity of the suspension can be modified either by creating static particle structures that facilitate or block heat transfer, or by using multiaxial ac fields to drive emergent particle dynamics that create vigorous, organized, non-contact flow. The equivalent thermal conductivity of a single suspension can be varied over a 100-fold range, and an equivalent thermal conductivity as high as 18.3 W m-1 K-1 has been achieved in an aqueous suspension containing only 2.0 vol% platelets. This value is more than twice the conductivity of liquid mercury. © 2013 The Royal Society of Chemistry.
Rohwer, Lauren E. ; Martin, James E.
Macromolecular Symposia
Martin, James E.
Summary The use of multiaxial magnetic fields to create particle composites with controlled structures and properties is discussed. These field-structured composites can have greatly enhanced isotropic or anisotropic properties, and have applications to sensing, actuation, and thermal transport. In this article the synthesis of these materials is discussed, and a variety of composite structures are shown. The magnetic permeability and thermal conductivity are given as specific examples of the utility of multiaxial field structuring. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Heinrichs, Todd D. ; Rohwer, Lauren E. ; Martin, James E.
Journal of Applied Physics
Martin, James E. ; Ribaudo, Troy R.
Arrays of circular pores in silicon can exhibit a phononic bandgap when the lattice constant is smaller than the phonon scattering length, and so have become of interest for use as thermoelectric materials, due to the large reduction in thermal conductivity that this bandgap can cause. The reduction in electrical conductivity is expected to be less, because the lattice constant of these arrays is engineered to be much larger than the electron scattering length. As a result, electron transport through the effective medium is well described by the diffusion equation, and the Seebeck coefficient is expected to increase. In this paper, we develop an expression for the purely diffusive thermal (or electrical) conductivity of a composite comprised of square or hexagonal arrays of parallel circular or elliptic cylinders of one material in a continuum of a second material. The transport parallel to the cylinders is straightforward, so we consider the transport in the two principal directions normal to the cylinders, using a self-consistent local field calculation based on the point dipole approximation. There are two limiting cases: large negative contrast (e.g., pores in a conductor) and large positive contrast (conducting pillars in air). In the large negative contrast case, the transport is only slightly affected parallel to the major axis of the elliptic cylinders but can be significantly affected parallel to the minor axis, even in the limit of zero volume fraction of pores. The positive contrast case is just the opposite: the transport is only slightly affected parallel to the minor axis of the pillars but can be significantly affected parallel to the major axis, even in the limit of zero volume fraction of pillars. The analytical results are compared to extensive FEA calculations obtained using Comsol™ and the agreement is generally very good, provided the cylinders are sufficiently small compared to the lattice constant. © 2013 American Institute of Physics.
Physical Review B
Martin, James E. ; Van Swol, Frank ; Ward, Donald K. ; Cruz-Campa, Jose L.
Journal of Physical Chemistry C
Martin, James E. ; Rohwer, Lauren E.
Soft Matter
Solis, Kyle J. ; Martin, James E.
We have discovered that new flow patterns can be created by applying a dc field to the ac biaxial fields that are used to induce isothermal magnetic advection (IMA). IMA is a recently discovered fluid flow phenomenon that occurs in suspensions of magnetic platelets subjected to particular time-dependent, uniform, biaxial magnetic fields. IMA is characterized by the formation of emergent flow patterns called advection lattices. We find that a dc field can disrupt the antiparallel flow symmetry of the advection lattice and give rise to qualitatively new flow patterns, including vigorous rotational flows and a highly regular diamond lattice. The rotational flows are very robust and may have applications to heat transfer. The diamond lattice is an intriguing and challenging example of emergent dynamics. Both of these effects occur when the dc field is applied orthogonal to the plane of the biaxial field. © The Royal Society of Chemistry 2012.
Van Swol, Frank ; Martin, James E.
Journal of Applied Physics
Solis, Kyle J. ; Martin, James E.
Isothermal magnetic advection (IMA) is a recently discovered method of inducing highly organized, non-contact flow lattices in suspensions of magnetic particles, using only uniform ac magnetic fields of modest strength. The initiation of these vigorous flows requires neither a thermal gradient nor a gravitational field, and so can be used to transfer heat and mass in circumstances where natural convection does not occur. These advection lattices are comprised of a square lattice of antiparallel flow columns. If the column spacing is sufficiently large compared to the column length and the flow rate within the columns is sufficiently large, then one would expect efficient transfer of both heat and mass. Otherwise, the flow lattice could act as a countercurrent heat exchanger and only mass will be efficiently transferred. Although this latter case might be useful for feeding a reaction front without extracting heat, it is likely that most interest will be focused on using IMA for heat transfer. In this paper, we explore the various experimental parameters of IMA to determine which of these can be used to control the column spacing. These parameters include the field frequency, strength, and phase relation between the two field components, the liquid viscosity, and particle volume fraction. We find that the column spacing can easily be tuned over a wide range to enable the careful control of heat and mass transfer. © 2012 American Institute of Physics.
Martin, James E.
Journal of Applied Physics
Solis, Kyle J. ; Martin, James E.
The development of high-performance thermal interface materials (TIMs) is crucial to enabling future generations of microelectronics because the TIM is usually the limiting thermal resistance in the heat removal path. Typical TIMs achieve modest thermal conductivities by including large volume fractions of randomly-dispersed, highly-conductive, spherical particles in a polymer resin. This paper explores field-structured magnetic platelet composites as a new approach to more effective TIMs. The motivation for this approach is rooted in shape functional theory, which shows that when the particle material has a significantly higher thermal conductivity than that of the polymer, the particle shape and orientation are the factors that limit conductivity enhancement. Oriented platelets are highly effective for heat transfer and if these are magnetic, then magnetic fields can be used to both orient and agglomerate these into structures that efficiently direct heat flow. In this paper we show that such field-structured composites have a thermal conductivity anisotropy of ∼3, and at the highest particle loading of 16 vol. we have achieved a 23-fold conductivity enhancement, which is 3-times larger than that achieved in unstructured platelet composites and 8-times greater than unstructured spherical particle composites. © 2012 American Institute of Physics.
Proposed for publication in Advanced Functional Materials.
Martin, James E. ; Solis, Kyle J. ; Rademacher, David R.
Journal of the Electrochemical Society
Rohwer, Lauren E. ; Martin, James E.
Rohwer, Lauren E. ; Nyman, M. ; Martin, James E.
Martin, James E.
ECS Transactions
Rohwer, Lauren E. ; Martin, James E. ; Chu, Dahwey C.
This study explores self-aligning patterns to achieve sub-micron alignment of die/wafers. We have patterned 2-d arrays of gold lines, whose width is half the periodicity, onto substrates. When commensurate patterns are brought into contact, the surface interactions between the Au lines enables high-resolution alignment, manually. Self-assembled monolayers of alkanethiols on the Au, further enhance the surface interactions, enabling alignment in less than half the time as for the uncoated die. A computation of the alignment force and torque between two featured surfaces illustrates how best to partern surfaces to maximize the tendency to align. An array of lines with a sinusoidal modulation in their spacing is more tolerant of initial misalignment, yet retains the high registration force of periodic line arrays. The optimal registration pattern might be a single spiral, as it generates both a radial force and a torque. Such patterns on die/wafers would enable precision device integration. ©The Electrochemical Society.
ECS Transactions
Shea-Rohwer, Lauren E.; Martin, James E. ; Chu, Dahwey C.
This study explores self-aligning patterns to achieve sub-micron alignment of die/wafers. We have patterned 2-d arrays of gold lines, whose width is half the periodicity, onto substrates. When commensurate patterns are brought into contact, the surface interactions between the Au lines enables high-resolution alignment, manually. Self-assembled monolayers of alkanethiols on the Au, further enhance the surface interactions, enabling alignment in less than half the time as for the uncoated die. A computation of the alignment force and torque between two featured surfaces illustrates how best to partern surfaces to maximize the tendency to align. An array of lines with a sinusoidal modulation in their spacing is more tolerant of initial misalignment, yet retains the high registration force of periodic line arrays. The optimal registration pattern might be a single spiral, as it generates both a radial force and a torque. Such patterns on die/wafers would enable precision device integration. ©The Electrochemical Society.
Rohwer, Lauren E. ; Chu, Dahwey C. ; Martin, James E.
This late-start LDRD explores chemical strategies that will enable sub-micron alignment accuracy of dies and wafers by exploiting the interfacial energies of chemical ligands. We have micropatterned commensurate features, such as 2-d arrays of micron-sized gold lines on the die to be bonded. Each gold line is functionalized with alkanethiol ligands before the die are brought into contact. The ligand interfacial energy is minimized when the lines on the die are brought into registration, due to favorable interactions between the complementary ligand tails. After registration is achieved, standard bonding techniques are used to create precision permanent bonds. We have computed the alignment forces and torque between two surfaces patterned with arrays of lines or square pads to illustrate how best to maximize the tendency to align. We also discuss complex, aperiodic patterns such as rectilinear pad assemblies, concentric circles, and spirals that point the way towards extremely precise alignment.
Martin, James E.
Proposed for publication in Journal of Applied Physics.
Martin, James E. ; Gulley, Gerald L.
Proposed for publication in Physical Review Letters.
Solis, Kyle J. ; Martin, James E.
Journal of Luminescence
Rohwer, Lauren E. ; Martin, James E.
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
Martin, James E. ; Anderson, Robert A. ; Read, Douglas R. ; Gulley, Gerald
We investigate the magnetostriction of field-structured magnetoelastomers, which are an important class of materials that have great potential as both sensors and actuators. Field-structured magnetoelastomers are synthesized by suspending magnetic particles in a polymeric resin and subjecting these to magnetic structuring fields during polymerization. These structuring fields can consist of as many as three orthogonal ac components, allowing a wide variety of particles structures-chains, sheets, or networks-to be formed. A principal issue is how particle structure and loading affects the magnetostriction of these materials. To investigate magnetostriction in these field-structured composites we have constructed a constant stress, optical cantilever apparatus capable of 1 ppm strain resolution. Magnetoelastomers having a wide range of particle loadings and structures are investigated, and it is shown that the observed deformation depends strongly on composite structure. The best magnetoelastomers exhibit a contractive strain of 10 000 ppm, the worst materials exhibit a negative, tensile response, which we show is due to the dominance of demagnetizing field effects over magnetostriction. Finally, some discussion is given to the surprising finding that magnetostriction is proportional to the sample prestrain. Simulations of a chain of particles in an elastomer show that particle clumping transitions can occur, but this does not account for the dependence of magnetostriction on prestrain. © 2006 The American Physical Society.
Results 26–50 of 74
25 Results per page
50 Results per page
100 Results per page
200 Results per page