Tamper-indicating devices (TIDs), also known as seals, play a crucial role in various sectors including international nuclear safeguards, arms control, domestic security, and commercial products, by ensuring that monitored or high-value items are not accessed undetected. These devices do not block access but alert to unauthorized tampering. With adversaries' capabilities evolving, there's a pressing need for seals to advance in terms of effectiveness (e.g., better tamper indication and unique identification), and new technology can improve the efficiency of installation and verification. Passive loop seals, widely used in international nuclear safeguards to ensure that continuity of knowledge is maintained on declared items, face stringent International Atomic Energy Agency (IAEA) requirements that surpass those met by commercial products. The metal cup seal (Figure 1, left), a staple IAEA seal, is robust but requires significant resources for post-use verification – specifically, the seal’s unique identity can only be verified at IAEA headquarters after removal from facilities. Further, the seal has been in use for decades and seal types should periodically be replaced to counter adversarial efforts for defeating seals. In 2020, the IAEA outlined about 40 requirements for a new passive loop seal, aiming for in-situ verification, minimal external tool use, unique identification (UID), and clear tamper indication. In response, research and development efforts focused on creating a new passive loop seal that meets these criteria and in 2022 the IAEA announced the completion of the Field Verifiable Passive Loop Seal (FVPS) (Figure 1, right). Concurrently to the IAEA’s efforts, Sandia National Laboratories (SNL) and Oak Ridge National Laboratory (ORNL) designed, developed, and tested two seal versions – Puck and Puck/SAW, with Puck based on the IAEA’s requirements and including a novel visually-obvious tamper response, and Puck/SAW adding additional beneficial capabilities like the ability to receive a unique identifier from a standoff distance and monitoring the wire integrity. Puck/SAW was specifically designed and developed to address sealing applications in dry spent fuel storage facilities, where the number of sealed spent fuel containers results in heavy verification burden and inspector safety issues related to radiation exposure. These efforts are described in this Executive Summary.
Artificial intelligence (AI) and machine learning (ML) are near-ubiquitous in day-to-day life; from cars with automated driver-assistance, recommender systems, generative content platforms, and large language chatbots. Implementing AI as a tool for international safeguards could significantly decrease the burden on safeguards inspectors and nuclear facility operators. The use of AI would allow inspectors to complete their in-field activities quicker, while identifying patterns and anomalies and freeing inspectors to focus on the uniquely human component of inspections. Sandia National Laboratories has spent the past two and a half years developing on-device machine learning to develop both a digital and robotic assistant. This combined platform, which we term INSPECTA, has numerous on-device machine learning capabilities that have been demonstrated at the laboratory scale. This work describes early successes implementing AI/ML capabilities to reduce the burden of tedious inspector tasks such as seal examination, information recall, note taking, and more.
Sandia National Laboratories (SNL) is designing and developing an Artificial Intelligence (AI)-enabled smart digital assistant (SDA), Inspecta (International Nuclear Safeguards Personal Examination and Containment Tracking Assistant). The goal is to provide inspectors an in-field digital assistant that can perform tasks identified as tedious, challenging, or prone to human error. During 2021, we defined the requirements for Inspecta based on reviews of International Atomic Energy Agency (IAEA) publications and interviews with former IAEA inspectors. We then mapped the requirements to current commercial or open-source technical capabilities to provide a development path for an initial Inspecta prototype while highlighting potential research and development tasks. We selected a highimpact inspection task that could be performed by an early Inspecta prototype and are developing the initial architecture, including hardware platform. This paper describes the methodology for selecting an initial task scenario, the first set of Inspecta skills needed to assist with that task scenario and finally the design and development of Inspecta’s architecture and platform.
The use of remotely transmitted data from a nuclear facility under international nuclear safeguards to an inspectorate headquarters has been rapidly growing since inception as its value in reducing inspection effort and cost is demonstrated. There are opportunities for further growth moving forward including (1) the number of spent fuel casks in dry interim storage are increasing, leading to strain on inspection resources and potentially increased radiation exposure to inspectors, (2) the frequency of encapsulating spent nuclear fuel for final disposal in geological repositories occurs at a rate that may lead to the need for on-site inspectors unless systems can be developed to remotely transmit data, and (3) new facility types such as small modular reactors may rely heavily on remotely transmitted data due in part to remote locations of operation and mobility. Challenges need to be addressed too and include (1) hesitancy to implement remote data transmission by states, (2) data collection, transmission, security, and analysis, and (3) reliable power and communications. This report examines the evolution, equipment deployed, status, and opportunities/challenges of remote data transmission moving forward.
Sandia National Laboratories is developing a new method for detecting penetration of tamper - indicating enclosures (TIEs). This method incorporates the use of "bleeding" materials (analogous to visually obvious, colorful bruised skin that doesn't heal) into the design of TIEs. As designed, it will allow inspectors to use simple visual observation to detect attempts to penetrate the external surfaces of a TIE, without providing adversaries the ability to repair damage. A material of this type can enhance tamper indication of current TIEs used to support treaty verification regimes. Current TIE inspections are time - consuming and rely on subjective visual assessment by an inspector, equipment such as eddy current or camera devices, or involve approaches that may be limited due to application environment. The complexities and requirements that volumetric sealing methods (or TIEs) must address are: (1) enclosures that are non - standard in size/shape; (2) enclosures that may be inspectorate - or facility - owned; (3) finding tamper attempts that are difficult and time consuming for an inspector to locate; (4) enclosures that are reliable and durable enough to survive the conditions that exist in the operating environment (including facility handling); and (5) methods that prevent adversaries from repairing penetrations. Early project R&D [1] focused on encapsulated transition metals. Due to the challenges associated with the transition metal - based approach, a mitigation approach was investigated resulting in two separate research paths — one that involves fabricating custom TIE molds that meet the specific (size and shape) needs of safeguards equipment a nd one that can be deployed as a sprayed on or painted coating to an existing TIE or surface. The "custom mold" approach is based on creating thin layers of materials that , when penetrated, expose an inner material to O2 which causes an irreversible color change. The "in-situ coating" approach is based on applying a sensor solution containing color changing microcapsules that bleed when the microcapsule is ruptured. The anticipated benefits of this work are passive, flexible, scalable, robust , cost-effective TIEs with visually obvious responses to tamper attempts. This provides more efficient and effective monitoring , as inspectors will require little or no additional equipment and will be able to detect tamper without extensive time - consuming visual examination. Applications include custom TIEs (cabinets , equipment enclosures or seal bodies ), or spray-coating/painting onto facility-owned items, walls or structures, or circuit boards. The paper describes research and testing completed to-date on the method and integration of select system components.
Sandia National Laboratories is developing a way to visualize molecular changes that indicate penetration of a tamper-indicating enclosure (TIE). Such "bleeding" materials (analogous to visually obvious, colorful bruised skin that doesn't heal) allows inspectors to use simple visual observation to readily recognize that penetration into a material used as a TIE has been attempted, without providing adversaries the ability to repair damage. Such a material can significantly enhance the current capability for TIEs, used to support treaty verification regimes. Current approaches rely on time-consuming and subjective visual assessment by an inspector, external equipment, such as eddy current or camera devices, or active approaches that may be limited due to application environment. The complexity of securing whole volumes includes: (1) enclosures that are non-standard in size/shape; (2) enclosures that may be inspectorate- or facility-owned; (3) tamper attempts that are detectable but difficult or timely for an inspector to locate; (4) the requirement for solutions that are robust regarding reliability and environment (including facility handling); and (5) the need for solutions that prevent adversaries from repairing penetrations. The approach is based on a transition metal ion solution within a microsphere changing color irreversibly when the microsphere is ruptured. Investigators examine 3D printing of the microspheres as well as the spray coating formulation. The anticipated benefits of this work are passive, flexible, scalable, cost-effective TIEs with obvious and robust responses to tamper attempts. This results in more efficient and effective monitoring, as inspectors will require little or no additional equipment and will be able to detect tamper without extensive time-consuming visual examination. Applications can include custom TIEs (cabinets or equipment enclosures), spray-coating onto facility-owned items, spray-coating of walls or structures, spray-coatings of circuit boards, and 3D-printed seal bodies. The paper describes research to-date on the sensor compounds and microspheres.
Sandia National Laboratories (SNL) is investigating photovoltaic (PV) cell configurations, integrating them with the battery-operated Remotely Monitored Sealing Array (RMSA), and testing and evaluating performance for enhanced battery life under various lighting conditions at a facility at the Savannah River Site (SRS) or Savannah River National Laboratory (SRNL). Unattended safeguards equipment (e.g. seals) incorporates many low-power electronic circuits, which are often powered by expensive and environmentally toxic lithium batteries. These batteries must periodically be replaced, adding a radiological hazard for both safeguards inspectors and operators. An extended field test of these prototype PV energy harvesting (EH) RMSAs at an operational nuclear facility will give additional data and allow for an analysis of this technology in a variety of realistic conditions, which will be documented in a final report. RMSAs are used for this testing, but SNL envisions energy harvesting technology may be applicable to additional safeguards equipment.
Access points at a deep, mined geological repository (GR) for the disposal of spent nuclear fuel (SNF) and other nuclear wastes present potential diversion paths for nuclear material. Because C/S measures are not likely to be used underground, access to a GR will require unprecedented reliance on C/S measures to maintain continuity of knowledge (CoK) on SNF buried underground. We develop a model GR based on common features of GR designs from national programs in order to develop and optimize C/S measures for GR access points that maximize confidence that CoK is maintained on SNF underground. Critical access points identified in this study are surface entrances to (1) the GR ramp (2) the excavation shaft, (3) the main elevator shaft, and (4) the ventilation shaft. The first three are considered critical detection points (DPs), whereas the fourth is considered a non-critical DP. The reason for the distinction is due to the different design capabilities of shaft components: the first three (ramp, excavation shaft, main elevator) are all capable of being used to move material from the underground to the surface, whereas the ventilation shaft is not. Such capabilities are verified during periodic design information verification (DIV) inspections.
International nuclear safeguards inspectors visit nuclear facilities to assess their compliance with international nonproliferation agreements. Inspectors note whether anything unusual is happening in the facility that might indicate the diversion or misuse of nuclear materials, or anything that changed since the last inspection. They must complete inspections under restrictions imposed by their hosts, regarding both their use of technology or equipment and time allotted. Moreover, because inspections are sometimes completed by different teams months apart, it is crucial that their notes accurately facilitate change detection across a delay. The current study addressed these issues by investigating how note-taking methods (e.g., digital camera, hand-written notes, or their combination) impacted memory in a delayed recall test of a complex visual array. Participants studied four arrays of abstract shapes and industrial objects using a different note-taking method for each, then returned 48–72Â h later to complete a memory test using their notes to identify objects changed (e.g., location, material, orientation). Accuracy was highest for both conditions using a camera, followed by hand-written notes alone, and all were better than having no aid. Although the camera-only condition benefitted study times, this benefit was not observed at test, suggesting drawbacks to using just a camera to aid recall. Change type interacted with note-taking method; although certain changes were overall more difficult, the note-taking method used helped mitigate these deficits in performance. Finally, elaborative hand-written notes produced better performance than simple ones, suggesting strategies for individual note-takers to maximize their efficacy in the absence of a digital aid.
International nuclear safeguards inspectors are tasked with verifying that nuclear materials in facilities around the world are not misused or diverted from peaceful purposes. They must conduct detailed inspections in complex, information-rich environments, but there has been relatively little research into the cognitive aspects of their jobs. We posit that the speed and accuracy of the inspectors can be supported and improved by designing the materials they take into the field such that the information is optimized to meet their cognitive needs. Many in-field inspection activities involve comparing inventory or shipping records to other records or to physical items inside of a nuclear facility. The organization and presentation of the records that the inspectors bring into the field with them could have a substantial impact on the ease or difficulty of these comparison tasks. In this paper, we present a series of mock inspection activities in which we manipulated the formatting of the inspectors’ records. We used behavioral and eye tracking metrics to assess the impact of the different types of formatting on the participants’ performance on the inspection tasks. The results of these experiments show that matching the presentation of the records to the cognitive demands of the task led to substantially faster task completion.
International nuclear safeguards inspectors are tasked with verifying that nuclear materials in facilities around the world are not misused or diverted from peaceful purposes. They must conduct detailed inspections in complex, information-rich environments, but there has been relatively little research into the cognitive aspects of their jobs. We posit that the speed and accuracy of the inspectors can be supported and improved by designing the materials they take into the field such that the information is optimized to meet their cognitive needs. Many in-field inspection activities involve comparing inventory or shipping records to other records or to physical items inside of a nuclear facility. The organization and presentation of the records that the inspectors bring into the field with them could have a substantial impact on the ease or difficulty of these comparison tasks. In this paper, we present a series of mock inspection activities in which we manipulated the formatting of the inspectors’ records. We used behavioral and eye tracking metrics to assess the impact of the different types of formatting on the participants’ performance on the inspection tasks. The results of these experiments show that matching the presentation of the records to the cognitive demands of the task led to substantially faster task completion.
Sandia National Laboratories (SNL) is investigating photovoltaic (PV) cell configurations, integrating them with the battery-operated Remotely Monitored Sealing Array (RMSA), and testing and evaluating performance for enhanced battery life under various environmental conditions at the K-Area Material Storage (KAMS) facility at the Savannah River Site (SRS). Unattended safeguards equipment (e.g. seals) incorporates many low-power electronic circuits, which are often powered by expensive and environmentally toxic lithium batteries. These batteries must periodically be replaced, adding a radiological hazard for both safeguards inspectors and operators. An extended field test of these prototype PV energy harvesting (EH) RMSAs at an operational nuclear facility will give additional data and allow for an analysis of this technology in a variety of realistic conditions, which will be documented in a final report. RMSAs are used for this testing, but SNL envisions energy harvesting technology may be applicable to other safeguards equipment.
This study examines methods that can help maximize confidence in maintaining Continuity of Knowledge (CoK) on plutonium-bearing wastes, from a final safeguards-verification measurement through emplacement underground. The study identifies Containment and Surveillance (C/S) measures that can be applied during packaging of plutonium wastes at the Savannah River Site (SRS) in South Carolina, USA, through shipment to, and receipt and disposal at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, USA. Results of this study could apply to countries with a Comprehensive Safeguards Agreement (CSA) that plan to dispose in a geological repository plutonium or other non-fuel nuclear materials that are under international safeguards.
Current designs for spent fuel transportation casks cannot ensure a cask's integrity during shipment, nor is there any verifiable means of maintaining continuity of knowledge (CoK) on a cask's contents. Spent fuel destined for encapsulation plants or geological repositories requires additional containment and surveillance (C/S) measures during shipment. Following final safeguards accountancy measurements on spent fuel assemblies, the shipment of verified assemblies will require unprecedented reliance on maintaining CoK on the fuel inside transport casks. Such increased reliance is due to the lack of reverification of spent fuel following encapsulation into disposal canisters and by meeting the requirement of dual C/S measures during such fuel shipments according to recommendations made by the Application of Safeguards to Geological Repositories (ASTOR) International Atomic Energy Agency (IAEA) expert group. By designing spent fuel transportation casks with effective seals integrated into their design, CoK can be more effectively maintained than by ad hoc C/S measures because seal integration ensures that a cask has not been tampered with. Externally applied seals might not be able to provide such assurance for currently designed spent fuel transportation casks, although some combination of seals, detectors, and/or a technology that can verify canister integrity might provide this assurance. This paper examines the design criteria for integrating safeguards seals into transportation casks and provides recommendations for near-term applications.
Maintaining Continuity of Knowledge (CoK) of spent fuel throughout its life cycle is a key objective of the International Atomic Energy Agency (IAEA). This report describes a project in which two specific technologies, cameras with infrared (IR) imaging capabilities and imaging sonar, were tested to determine their effectiveness in augmenting optical surveillance cameras currently used for maintaining CoK for spent nuclear fuel (SNF) staged in spent fuel pools. Furthermore, the project identifies any modifications required to the technologies to facilitate deployment for international safeguards purposes. This report presents results for the imaging sonar tested at Sandia National Laboratories (SNL) in a mockup spent nuclear fuel pool and for the IR-capable cameras tested by Pacific Northwest National Laboratory (PNNL) in the Oregon State University Training, Research, Isotopes, General Atomics (TRIGA) research reactor.
Future nuclear arms - control agreements may place numerical limits on the total number of warheads in the nuclear arsenals of states. Verifying these limits may require inspectors to account for individual warheads, both deployed and non-deployed. This task could be accomplished with unique identifiers, but standard tagging techniques may be unacceptable in this case due to host concerns about safety and intrusiveness. To resolve this dilemma, we revisit the so - called Buddy Tag concept first proposed by Sandia National Laboratories in the early 1990s. The conceptual innovation in the Buddy Tag was to by separate the tag from the treaty limited item itself. Verification of the pairings between tags and limited items would take place during a short-notice inspection, where the host would be required to produce one buddy tag for each item. Sensors on the Buddy Tag would show that it had not been moved to the inspected site after the inspection was declared (e.g., within the last 24-48 hours). If the inspector counted more (or fewer) treaty limited items than Buddy Tags at the inspected site, a treaty violation could be asserted. Using a number of single-site inspections, an inspecting party can hold the host at risk for discovery of violating the treaty at an enterprise level by possessing more treaty limited items than the treaty allows. In this project, we developed a buddy-tag prototype for demonstration and evaluation purposes. This paper summarizes the performance requirements for an advanced Buddy Tag, the proposed conduct of operations, the design choices and functionalities of the different subsystems, and initial testing results. The report also summarizes peer review feedback obtained throughout the project.
Once a geological repository has begun operations, the encapsulation and disposal of spent fuel will be performed as a continuous, industrial-scale series of processes, during which time safeguards seals will be applied to transportation casks before shipment from an encapsulation plant, and then verified and removed following receipt at the repository. These operations will occur approximately daily during several decades of Sweden's repository operation; however, requiring safeguards inspectors to perform the application, verification, and removal of every seal would be an onerous burden on International Atomic Energy Agency's (IAEA's) resources. Current IAEA practice includes allowing operators to either apply seals or remove them, but not both, so the daily task of either applying or verifying and removing would still require continuous presence of IAEA inspectors at one site at least. Of special importance is the inability to re-verify cask or canisters from which seals have been removed and the canisters emplaced underground. Successfully designing seals that can be applied, verified and removed by an operator with IAEA approval could impact more than repository shipments, but other applications as well, potentially reducing inspector burdens for a wide range of such duties.
Deep borehole disposal (DBD) has been suggested as an option for disposing spent nuclear fuel in a number of countries, including several countries that are subject to international safeguards. DBD presents some distinct challenges for safeguards compared to a conventional mined geological repository (MGR), including the ability to verify declared design information about the borehole. The ability to verify a borehole's design is crucial for assuring that spent fuel or other accountable nuclear materials are disposed as declared in a borehole of known and verifiable design. This study reviews existing commercial off-the-shelf (COTS) borehole inspection tools currently used by the drilling industry, and evaluates the capabilities of those COTS inspection tools against how well they can meet potential needs and requirements of Design Information Verification (DIV) inspections for international safeguards. The study provides recommendations for several promising COTS borehole inspection tools that might be used for DIV safeguards inspections and recommends possible modifications and future testing
Today’s international nuclear safeguards inspectors have access to an increasing volume of supplemental information about the facilities under their purview, including commercial satellite imagery, nuclear trade data, open source information, and results from previous safeguards activities. In addition to completing traditional in-field safeguards activities, inspectors are now responsible for being able to act upon this growing corpus of supplemental safeguards-relevant data and for maintaining situational awareness of unusual activities taking place in their environment. However, cognitive science research suggests that maintaining too much information can be detrimental to a user’s understanding, and externalizing information (for example, to a mobile device) to reduce cognitive burden can decrease cognitive function related to memory, navigation, and attention. Given this dichotomy, how can international nuclear safeguards inspectors better synthesize information to enhance situational awareness, decision making, and performance in the field? This paper examines literature from the fields of cognitive science and human factors in the areas of wayfinding, situational awareness, equipment and technical assistance, and knowledge transfer, and describes the implications for the provision of, and interaction with, safeguards-relevant information for international nuclear safeguards inspectors working in the field.
Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.
This purpose of this document is to provide an overview of Chain of Custody (CoC) technology options that could be made available for the LETTERPRESS exercise as part of the Quad Working Group. The Quad Working Group comprises five sub-working groups (Management, Protocol, Simulation, Technology, and Training) with members from the U.S., U.K., Norway, and Sweden having the goal of providing a repeatable, realistic arms control exercise (dubbed LETTERPRESS) to be executed in representative facilities and using non-proliferative but representative treaty items. The Technology Working Group is responsible for supporting the technology requirements of the LETTERPRESS exercise and as such the technologies presented here are possible options to meet those requirements.
International nuclear safeguards are technical measures implemented by the International Atomic Energy Agency (IAEA) to verify the correctness and completeness of declarations made by States about their nuclear activities. The systems used to verify such activities include electronic and digital hardware and software components capable of data collection, processing, analysis, storage and transmission. Despite increasing efforts to protect digital systems against unauthorized access or attack through cybersecurity measures, these systems are not immune to cyber exploitation that could compromise their integrity or reliability. Previous versions of these systems did not include capabilities that exist today, such as BluetoothTM and GPS. The inclusion of these new capabilities, as well as new data processing and storage mechanisms, adds new attack vectors and opportunities for adversaries to exploit the devices that did not previously exist. As mentioned in the above referenced Cybersecurity for Safeguards study, cyber-domain vulnerabilities present risks to the equipment used to perform the international nuclear safeguards mission. The IAEA has produced guidance on the protection of nuclear facilities and their computer systems against cyber threats, but these documents do not specifically address the risks to safeguards or safeguards equipment. In response, the U.S. Department of Energy National Nuclear Security Administration (DOE/NNSA) Office of International Nuclear Safeguards/Safeguards Technology Development (NA-241) sponsored Sandia National Laboratories (Sandia, SNL) and the Idaho National Laboratory (Idaho, INL) to conduct a one-year study to evaluate cyber related vulnerabilities in safeguards equipment and develop recommendations for the mitigation of any identified risks.
The ability to track nuclear material is a challenge for resiliency of complex systems, e.g., harsh environments. RF tags, frequently used in national security applications, cannot be used for technological, operational, or safety reasons. Magnetic Smart Tags (MaST) is a novel tag technology based on magnetoelastic sensing that circumvents these issues. This technology is enabled by a new, cost-effective, batch manufacturing electrochemical deposition (ECD) process. This new advancement in fabrication enables multi-frequency tags capable of providing millions of possible codes for tag identification unlike existing theft deterrent tags that can convey only a single bit of information. Magnetostrictive 70% Co: 30% Fe was developed as the base alloy comprising the magnetoelastic resonator transduction element. Saturation magnetostriction, λS, has been externally measured by the Naval Research Laboratory to be as high as 78 ppm. Description of a novel MEMS variable capacitive test structure is described for future measurements of this parameter.
Action Sheet 1 between the United States Department of Energy (DOE) National Nuclear Security Administration (NNSA) and Forschungszentrum Julich (FZJ) for "Assessment of Lifecycle Challenges for the Electronic Optical Sealing System (EOSS)" explores the lifecycle challenges of the EOSS and identifies a strategy for the further management of the EOSS within the context of Germany's safeguards implementation. Specifically, the assessment explores lifecycle challenges for use of the seal during reactor operation, shutdown and removal of spent fuel, and the decommissioning process in Germany, identifying possible upgrades to the seal, and providing recommendations to the International Atomic Energy Agency (IAEA) and the European Atomic Energy Community (Euratom) on what should be done to ensure the reliability and usability of the EOSS over the next decade.
Reflective particle tags derive their unique identities through utilization of thousands of microscopic reflective elements randomly suspended in a clear adhesive matrix. For verification of a tag's authenticity, an illumination/imaging system is used to "read" information about precise positions and orientations of faceted particles. SNL developed the original Reflective Particle Tag (RPT) system, comprising a tag and an imager, in the 1990's to identify treaty-accountable items. Since then, the RPT system has evolved with advances in computing, imaging, and materials, and is considered a robust, low-cost, hard-to-counterfeit passive tagging system for treaty verification. However, a limitation of the current system is the need to mechanically dock the reader with the tag, which prevents its use in many situations. This paper discusses R&D at SNL to develop a non-contact handheld imaging system that will allow RPT system use in new scenarios and allows automation.