Training neural hardware with noisy components
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ECS Transactions
Resistive random access memory (ReRAM), or memristors, may be capable of significantly improve the efficiency of neuromorphic computing, when used as a central component of an analog hardware accelerator. However, the significant electrical variation within a device and between devices degrades the maximum efficiency and accuracy which can be achieved by a ReRAMbased neuromorphic accelerator. In this report, the electrical variability is characterized, with a particular focus on that which is due to fundamental, intrinsic factors. Analytical and ab initio models are presented which offer some insight into the factors responsible for this variability.
ECS Transactions
Resistive random access memory (ReRAM), or memristors, may be capable of significantly improve the efficiency of neuromorphic computing, when used as a central component of an analog hardware accelerator. However, the significant electrical variation within a device and between devices degrades the maximum efficiency and accuracy which can be achieved by a ReRAMbased neuromorphic accelerator. In this report, the electrical variability is characterized, with a particular focus on that which is due to fundamental, intrinsic factors. Analytical and ab initio models are presented which offer some insight into the factors responsible for this variability.
Abstract not provided.
Abstract not provided.
The purpose of this LDRD is to develop technology allowing warfighters to provide high-level commands to their unmanned assets, freeing them to command a group of them or commit the bulk of their attention elsewhere. To this end, a brain-emulating cognition and control architecture (BECCA) was developed, incorporating novel and uniquely capable feature creation and reinforcement learning algorithms. BECCA was demonstrated on both a mobile manipulator platform and on a seven degree of freedom serial link robot arm. Existing military ground robots are almost universally teleoperated and occupy the complete attention of an operator. They may remove a soldier from harm's way, but they do not necessarily reduce manpower requirements. Current research efforts to solve the problem of autonomous operation in an unstructured, dynamic environment fall short of the desired performance. In order to increase the effectiveness of unmanned vehicle (UV) operators, we proposed to develop robots that can be 'directed' rather than remote-controlled. They are instructed and trained by human operators, rather than driven. The technical approach is modeled closely on psychological and neuroscientific models of human learning. Two Sandia-developed models are utilized in this effort: the Sandia Cognitive Framework (SCF), a cognitive psychology-based model of human processes, and BECCA, a psychophysical-based model of learning, motor control, and conceptualization. Together, these models span the functional space from perceptuo-motor abilities, to high-level motivational and attentional processes.
Abstract not provided.
Frontiers in Artificial Intelligence and Applications
A key challenge in developing complete human equivalence is how to ground a synoptic theory of cognition in neural reality. Both cognitive architectures and neural models provide insight into how biological brains work, but from opposite directions. Here the authors report on initial work aimed at interpreting connectomic data in terms of algorithms. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. © 2011 The authors and IOS Press. All rights reserved.
The neocortex is perhaps the highest region of the human brain, where audio and visual perception takes place along with many important cognitive functions. An important research goal is to describe the mechanisms implemented by the neocortex. There is an apparent regularity in the structure of the neocortex [Brodmann 1909, Mountcastle 1957] which may help simplify this task. The work reported here addresses the problem of how to describe the putative repeated units ('cortical circuits') in a manner that is easily understood and manipulated, with the long-term goal of developing a mathematical and algorithmic description of their function. The approach is to reduce each algorithm to an enhanced perceptron-like structure and describe its computation using difference equations. We organize this algorithmic processing into larger structures based on physiological observations, and implement key modeling concepts in software which runs on parallel computing hardware.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Wide baseline matching is the state of the art for object recognition and image registration problems in computer vision. Though effective, the computational expense of these algorithms limits their application to many real-world problems. The performance of wide baseline matching algorithms may be improved by using a graphical processing unit as a fast multithreaded co-processor. In this paper, we present an implementation of the difference of Gaussian feature extractor, based on the CUDA system of GPU programming developed by NVIDIA, and implemented on their hardware. For a 2000x2000 pixel image, the GPU-based method executes nearly thirteen times faster than a comparable CPU-based method, with no significant loss of accuracy.
Visual simultaneous localization and mapping (VSLAM) is the problem of using video input to reconstruct the 3D world and the path of the camera in an 'on-line' manner. Since the data is processed in real time, one does not have access to all of the data at once. (Contrast this with structure from motion (SFM), which is usually formulated as an 'off-line' process on all the data seen, and is not time dependent.) A VSLAM solution is useful for mobile robot navigation or as an assistant for humans exploring an unknown environment. This report documents the design and implementation of a VSLAM system that consists of a small inertial measurement unit (IMU) and camera. The approach is based on a modified Extended Kalman Filter. This research was performed under a Laboratory Directed Research and Development (LDRD) effort.