Publications

126 Results

Search results

Jump to search filters

Proceedings of the 7th US/German Workshop on Salt Repository Research, Design, and Operation

Hansen, Francis D.; Steininger, Walter; Bollingerfehr, Willhelm

The 7th US/German Workshop on Salt Repository Research, Design, and Operation was held in Washington, DC on September 7-9, 2016. Over fifty participants representing governmental agencies, internationally recognized salt research groups, universities, and private companies helped advance the technical basis for salt disposal of radioactive waste. Representatives from several United States federal agencies were able to attend, including the Department of Energy's Office of Environmental Management and Office of Nuclear Energy, the Environmental Protection Agency, the Nuclear Regulatory Commission, and the Nuclear Waste Technical Review Board. A similar representation from the German ministries showcased the covenant established in a Memorandum of Understanding executed between the United States and Germany in 2011. The US/German workshops' results and activities also contribute significantly to the Nuclear Energy Agency Salt Club repository research agenda.

More Details

FY16 Summary Report: Participation in the KOSINA Project

Matteo, Edward N.; Hansen, Francis D.

Salt formations represent a promising host for disposal of nuclear waste in the United States and Germany. Together, these countries provided fully developed safety cases for bedded salt and domal salt, respectively. Today, Germany and the United States find themselves in similar positions with respect to salt formations serving as repositories for heat-generating nuclear waste. German research centers are evaluating bedded and pillow salt formations to contrast with their previous safety case made for the Gorleben dome. Sandia National Laboratories is collaborating on this effort as an Associate Partner, and this report summarizes that teamwork. Sandia and German research groups have a long-standing cooperative approach to repository science, engineering, operations, safety assessment, testing, modeling and other elements comprising the basis for salt disposal. Germany and the United States hold annual bilateral workshops, which cover a spectrum of issues surrounding the viability of salt formations. Notably, recent efforts include development of a database for features, events, and processes applying broadly and generically to bedded and domal salt. Another international teaming activity evaluates salt constitutive models, including hundreds of new experiments conducted on bedded salt from the Waste Isolation Pilot Plant. These extensive collaborations continue to build the scientific basis for salt disposal. Repository deliberations in the United States are revisiting bedded and domal salt for housing a nuclear waste repository. By agreeing to collaborate with German peers, our nation stands to benefit by assurance of scientific position, exchange of operational concepts, and approach to elements of the safety case, all reflecting cost and time efficiency.

More Details

Intermediate Scale Testing Recommendation Report

Hansen, Francis D.; Sobolik, Steven; Stauffer, Phil H.

A summary of recommendations for near-term intermediate-scale testing pertaining to a salt repository is provided in this report. Each proposal was asked to implement a phased progression, initiating with test plan production in FY 2017 and early-stage testing, if possible. Beyond 2017, testing is anticipated to progress to an underground setting and involve intermediate-scale field activities. Each test concept was presented at the June 6th 2016 meeting in Las Vegas NV and a team of DOE-NE, DOE-EM, and National Laboratory staff discussed the rnerits of each proposal. Discussions among managers and researchers in the weeks following the meeting led to selection of a path forward for phased testing that includes a series of small diarneter borehole tests designed to illuminate thermomechanical processes and potential vapor and brine transport. These tests are intended to be implemented at the WIPP facility and involve collaboration between SNL, LANL, and LBL. This document summarizes the test concepts generated by the te s of researchers and decisions made subsequent to the June 6th meeting.

More Details

Considerations of the Differences between Bedded and Domal Salt Pertaining to Disposal of Heat-Generating Nuclear Waste

Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven

Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as seal systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation, and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences. Developing models, testing material, characterizing processes, and analyzing performance all have overlapping application regardless of the salt formation of interest.

More Details

Characterization of Reconsolidated Crushed Salt from the BAMBUS Site

Hansen, Francis D.

Observational petrofabrics, thermal, mechanical, and hydrological measurements were made on reconsolidated salt samples extracted from the field site in which a study called Backfilling and Sealing of Underground Repositories for Radioactive Waste in Salt was conducted. Similar characterization was completed more than a decade ago, so this work furthers previous measurements after sustained consolidation in situ. Porosity determined by traditional point-counting on polished sections and helium porosimeter methods ranged from 20-25% with consolidation governed by brittle processes, as evidence of fluid-aided, grain-boundary processes was rarely observed. Thermal conductivity in the range of 2.3 W/(m∙K) is consistent for granular halite in this porosity range. Gas flow measurements yielded permeability of the order of 5e-13m2. Pressure-sensitive compressive strengths at 0.5, 1.0, and 2.0 MPa confining pressure were 8, 9, and 14 MPa, respectively, with apparent elastic moduli increase with deformation.

More Details

Proceedings of the 6th US/German Workshop on Salt Repository Research, Design, and Operation

Hansen, Francis D.; Steininger, W.K.; Bollingerfehr, Dbe T.

The 6th US/German Workshop on Salt Repository Research, Design, and Operation was held in Dresden. Germany on September 7-9, 2015. Over seventy participants helped advance the technical basis for salt disposal of radioactive waste. The number of collaborative efforts continues to grow and to produce useful documentation, as well as to define the state of the art for research areas. These Proceedings are divided into Chapters, and a list of authors is included in the Acknowledgement Section. Also in this document are the Technical Agenda, List of Participants, Biographical Information, Abstracts, and Presentations. Proceedings of all workshops and other pertinent information are posted on websites hosted by Sandia National Laboratories and the Nuclear Energy Agency Salt Club. The US/German workshops provide continuity for long-term research, summarize and publish status of mature areas, and develop appropriate research by consensus in a workshop environment. As before, major areas and findings are highlighted, which constitute topical Chapters in these Proceedings. In total, the scientific breadth is substantial and while not all subject matter is elaborated into chapter format, all presentations and abstracts are published in this document. In the following Proceedings, six selected topics are developed in detail.

More Details

Reconsolidated Salt as a Geotechnical Barrier

Hansen, Francis D.; Gadbury, Casey

Salt as a geologic medium has several attributes favorable to long-term isolation of waste placed in mined openings. Salt formations are largely impermeable and induced fractures heal as stress returns to equilibrium. Permanent isolation also depends upon the ability to construct geotechnical barriers that achieve nearly the same high-performance characteristics attributed to the native salt formation. Salt repository seal concepts often include elements of reconstituted granular salt. As a specific case in point, the Waste Isolation Pilot Plant recently received regulatory approval to change the disposal panel closure design from an engineered barrier constructed of a salt-based concrete to one that employs simple run-of-mine salt and temporary bulkheads for isolation from ventilation. The Waste Isolation Pilot Plant is a radioactive waste disposal repository for defense-related transuranic elements mined from the Permian evaporite salt beds in southeast New Mexico. Its approved shaft seal design incorporates barrier components comprising salt-based concrete, bentonite, and substantial depths of crushed salt compacted to enhance reconsolidation. This paper will focus on crushed salt behavior when applied as drift closures to isolate disposal rooms during operations. Scientific aspects of salt reconsolidation have been studied extensively. The technical basis for geotechnical barrier performance has been strengthened by recent experimental findings and analogue comparisons. The panel closure change was accompanied by recognition that granular salt will return to a physical state similar to the halite surrounding it. Use of run-of-mine salt ensures physical and chemical compatibility with the repository environment and simplifies ongoing disposal operations. Our current knowledge and expected outcome of research can be assimilated with lessons learned to put forward designs and operational concepts for the next generation of salt repositories. Mined salt repositories have the potential to isolate permanently vast inventories of radioactive and hazardous wastes.

More Details

FY15 Report on Thermomechanical Testing

Hansen, Francis D.; Buchholz, Stuart; Author, No

Sandia is participating in the third phase of a United States (US)-German Joint Project that compares constitutive models and simulation procedures on the basis of model calculations of the thermomechanical behavior and healing of rock salt (Salzer et al. 2015). The first goal of the project is to evaluate the ability of numerical modeling tools to correctly describe the relevant deformation phenomena in rock salt under various influences. Among the numerical modeling tools required to address this are constitutive models that are used in computer simulations for the description of the thermal, mechanical, and hydraulic behavior of the host rock under various influences and for the long-term prediction of this behavior. Achieving this goal will lead to increased confidence in the results of numerical simulations related to the secure disposal of radioactive wastes in rock salt. Results of the Joint Project may ultimately be used to make various assertions regarding stability analysis of an underground repository in salt during the operating phase as well as long-term integrity of the geological barrier in the post-operating phase A primary evaluation of constitutive model capabilities comes by way of predicting large-scale field tests. The Joint Project partners decided to model Waste Isolation Pilot Plant (WIPP) Rooms B & D which are full-scale rooms having the same dimensions. Room D deformed under natural, ambient conditions while Room B was thermally driven by an array of waste-simulating heaters (Munson et al. 1988; 1990). Existing laboratory test data for WIPP salt were carefully scrutinized and the partners decided that additional testing would be needed to help evaluate advanced features of the constitutive models. The German partners performed over 140 laboratory tests on WIPP salt at no charge to the US Department of Energy (DOE).

More Details

Salt reconsolidation applied to repository seals

The Mechanical Behavior of Salt VIII

Hansen, Francis D.; Popp, T.; Wieczorek, K.; Stuhrenberg, D.

An excellent scientific understanding of salt reconsolidation mechanisms has been established from experimental results and observational microscopy. Thermal, mechanical, and fluid transport properties of reconsolidating granular salt are fundamental to the design, analysis, and performance assessment of potential salt repositories for heat-generating nuclear waste. Application of acquired knowledge to construction techniques could potentially achieve high-performance seal properties upon construction or during the repository operational period, which lessens reliance on modeling to argue for evolving engineering characteristics and attainment of sealing functions at some future time. The robust database could be augmented by select reconsolidation experiments with admixtures and analogue studies with appropriate documentation of microprocesses.

More Details

Geomechanics issues regarding heat-generating waste disposal in salt

49th US Rock Mechanics / Geomechanics Symposium 2015

Hansen, Francis D.; Popp, T.

With an abundance of scientific information in hand, what are the remaining geomechanics issues for a salt repository for heat-generating nuclear waste disposal? The context of this question pertains to the development of a license application, rather than an exploration of the entire breadth of salt research. The technical foundation supporting a licensed salt repository has been developed in the United States and Germany since the 1960s. Although the level of effort has been inconsistent and discontinuous over the years, site characterization activities, laboratory testing, field-scale experiments, and advanced computational capability provide information and tools required for a license application, should any nation make that policy decision. Ample scientific bases exist to develop a safety case in the event a site is identified and governing regulations promulgated. Some of the key remaining geomechanics issues pertain to application of advanced computational tools to the repository class of problems, refinement of constitutive models and their validation, reduction of uncertainty in a few areas, operational elements, and less tractable requirements that may arise from regulators and stakeholders. This realm of issues as they pertain to salt repositories is being addressed in various research, development and demonstration activities in the United States and Germany, including extensive collaborations. Many research areas such as constitutive models and performance of geotechnical barriers have industry applications beyond repositories. And, while esoteric salt-specific phenomenology and micromechanical processes remain of interest, they will not be reviewed here. The importance of addressing geomechanics issues and their associated prioritization are a matter of discussion, though the discriminating criterion for considerations in this paper is a demonstrable tie to the salt repository safety case.

More Details

Granular Salt Summary: Reconsolidation Principles and Applications

Hansen, Francis D.; Popp, Till; Wieczorek, Klaus; Stuehrenberg, Dieter

The purposes of this paper are to review the vast amount of knowledge concerning crushed salt reconsolidation and its attendant hydraulic properties (i.e., its capability for fluid or gas transport) and to provide a sufficient basis to understand reconsolidation and healing rates under repository conditions. Topics covered include: deformation mechanisms and hydro-mechanical interactions during reconsolidation; the experimental data base pertaining to crushed salt reconsolidation; transport properties of consolidating granulated salt and provides quantitative substantiation of its evolution to characteristics emulating undisturbed rock salt; and extension of microscopic and laboratory observations and data to the applicable field scale.

More Details

Thermal-mechanical modeling of a generic high-level waste salt repository

Mechanical Behaviour of Salt VII

Clayton, Daniel J.; Arguello, Jose G.; Hardin, Ernest; Hansen, Francis D.

Coupled thermal-mechanical, three-dimensional, finite-element analyses were used to evaluate generic design concepts for a repository in salt, for spent nuclear fuel and high-level waste. This work used heat generation by spent nuclear fuel (SNF) typical of that presently stored at reactor sites in the U.S. For waste packages containing 4-PWR SNF assemblies, the results show peak temperatures within previously identified ranges acceptable for salt media. Peak temperatures and maximum backfill consolidation occur at the package-salt interface. Significant consolidation of the backfill, and closure of the mined opening, is projected to continue after peak temperatures are realized. For larger 21-PWR SNF packages, the peak temperature could approach 450°C locally or lower, depending on the aging history of the fuel. This ongoing study suggests the feasibility of a SNF management strategy using decay storage and larger (e.g., 21-PWR) waste packages.

More Details

Coupled thermal-hydrological-mechanical-chemical analyses of a repository in clay/shale for high-level waste

45th US Rock Mechanics / Geomechanics Symposium

Stone, C.M.; Martinez, Mario J.; Dewers, Thomas; Hansen, Francis D.; Hardin, Ernest; Argüello, J.G.; Holland, J.F.

This paper describes the modeling efforts undertaken during a recently completed feasibility study of a generic shale repository for disposal of high-level radioactive waste within the United States. A coupled thermal-hydrological-mechanical-chemical analysis of the shale repository was performed using the SIERRA Mechanics code developed at Sandia National Laboratories. Because U.S. efforts have focused on the volcanic tuff site at Yucca Mountain, radioactive waste disposal in U.S. shale formations has not been considered for many years. However, advances in multi-physics computational modeling and research into clay mineralogy continue to improve the scientific basis for assessing nuclear waste repository performance in such formations. Disposal of high-level radioactive waste in suitable shale formations is attractive because the material is essentially impermeable and self-sealing, conditions are chemically reducing, and sorption tends to prevent radionuclide transport. Vertically and laterally extensive shale and clay formations exist in multiple locations in the contiguous 48 states. © 2011 ARMA, American Rock Mechanics Association.

More Details

Repository performance confirmation

Hansen, Francis D.

Repository performance confirmation links the technical bases of repository science and societal acceptance. This paper explores the myriad aspects of what has been labeled performance confirmation in U.S. programs, which involves monitoring as a collection of distinct activities combining technical and social significance in radioactive waste management. This paper is divided into four parts: (1) A distinction is drawn between performance confirmation monitoring and other testing and monitoring objectives; (2) A case study illustrates confirmation activities integrated within a long-term testing and monitoring strategy for Yucca Mountain; (3) A case study reviews compliance monitoring developed and implemented for the Waste Isolation Pilot Plant; and (4) An approach for developing, evaluating and implementing the next generation of performance confirmation monitoring is presented. International interest in repository monitoring is exhibited by the European Commission Seventh Framework Programme 'Monitoring Developments for Safe Repository Operation and Staged Closure' (MoDeRn) Project. The MoDeRn partners are considering the role of monitoring in a phased approach to the geological disposal of radioactive waste. As repository plans advance in different countries, the need to consider monitoring strategies within a controlled framework has become more apparent. The MoDeRn project pulls together technical and societal experts to assimilate a common understanding of a process that could be followed to develop a monitoring program. A fundamental consideration is the differentiation of confirmation monitoring from the many other testing and monitoring activities. Recently, the license application for Yucca Mountain provided a case study including a technical process for meeting regulatory requirements to confirm repository performance as well as considerations related to the preservation of retrievability. The performance confirmation plan developed as part of the Yucca Mountain license application identified a broad suite of monitoring activities. A revision of the plan was expected to winnow the number of activities down to a manageable size. As a result, an objective process for the next stage of performance confirmation planning was developed as an integral part of an overarching long-term testing and monitoring strategy. The Waste Isolation Pilot Plant compliance monitoring program at once reflects its importance to stakeholders while demonstrating adequate understanding of relevant monitoring parameters. The compliance criteria were stated by regulation and are currently monitored as part of the regulatory rule for disposal. At the outset, the screening practice and parameter selection were not predicated on a direct or indirect correlation to system performance metrics, as was the case for Yucca Mountain. Later on, correlation to performance was established, and the Waste Isolation Pilot Plant continues to monitor ten parameters originally identified in the compliance certification documentation. The monitoring program has proven to be effective for the technical intentions and societal or public assurance. The experience with performance confirmation in the license application process for Yucca Mountain helped identify an objective, quantitative methodology for this purpose. Revision of the existing plan would be based on findings of the total system performance assessment. Identification and prioritization of confirmation activities would then derive from performance metrics associated with performance assessment. Given the understanding of repository performance confirmation, as reviewed in this paper, it is evident that the performance confirmation program for the Yucca Mountain project could be readily re-engaged if licensing activities resumed.

More Details

Granite disposal of U.S. high-level radioactive waste

Mariner, Paul; Lee, Joon H.; Hardin, Ernest; Hansen, Francis D.; Freeze, Geoffrey; Lord, Anna S.; Goldstein, Barry

This report evaluates the feasibility of disposing U.S. high-level radioactive waste in granite several hundred meters below the surface of the earth. The U.S. has many granite formations with positive attributes for permanent disposal. Similar crystalline formations have been extensively studied by international programs, two of which, in Sweden and Finland, are the host rocks of submitted or imminent repository license applications. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in granite media. In this report we develop scoping performance analyses, based on the applicable features, events, and processes (FEPs) identified by international investigators, to support generic conclusions regarding post-closure safety. Unlike the safety analyses for disposal in salt, shale/clay, or deep boreholes, the safety analysis for a mined granite repository depends largely on waste package preservation. In crystalline rock, waste packages are preserved by the high mechanical stability of the excavations, the diffusive barrier of the buffer, and favorable chemical conditions. The buffer is preserved by low groundwater fluxes, favorable chemical conditions, backfill, and the rigid confines of the host rock. An added advantage of a mined granite repository is that waste packages would be fairly easy to retrieve, should retrievability be an important objective. The results of the safety analyses performed in this study are consistent with the results of comprehensive safety assessments performed for sites in Sweden, Finland, and Canada. They indicate that a granite repository would satisfy established safety criteria and suggest that a small number of FEPs would largely control the release and transport of radionuclides. In the event the U.S. decides to pursue a potential repository in granite, a detailed evaluation of these FEPs would be needed to inform site selection and safety assessment.

More Details

Salt disposal of heat-generating nuclear waste

Hansen, Francis D.; Leigh, Christi

This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.

More Details

Shale disposal of U.S. high-level radioactive waste

Hansen, Francis D.; Gaither, Katherine N.; Sobolik, Steven; Cygan, Randall T.; Hardin, Ernest; Rechard, Robert P.; Freeze, Geoffrey; Sassani, David C.; Brady, Patrick V.; Stone, Charles M.; Martinez, Mario J.; Dewers, Thomas

This report evaluates the feasibility of high-level radioactive waste disposal in shale within the United States. The U.S. has many possible clay/shale/argillite basins with positive attributes for permanent disposal. Similar geologic formations have been extensively studied by international programs with largely positive results, over significant ranges of the most important material characteristics including permeability, rheology, and sorptive potential. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in shale media. We develop scoping performance analyses, based on the applicable features, events, and processes identified by international investigators, to support a generic conclusion regarding post-closure safety. Requisite assumptions for these analyses include waste characteristics, disposal concepts, and important properties of the geologic formation. We then apply lessons learned from Sandia experience on the Waste Isolation Pilot Project and the Yucca Mountain Project to develop a disposal strategy should a shale repository be considered as an alternative disposal pathway in the U.S. Disposal of high-level radioactive waste in suitable shale formations is attractive because the material is essentially impermeable and self-sealing, conditions are chemically reducing, and sorption tends to prevent radionuclide transport. Vertically and laterally extensive shale and clay formations exist in multiple locations in the contiguous 48 states. Thermal-hydrologic-mechanical calculations indicate that temperatures near emplaced waste packages can be maintained below boiling and will decay to within a few degrees of the ambient temperature within a few decades (or longer depending on the waste form). Construction effects, ventilation, and the thermal pulse will lead to clay dehydration and deformation, confined to an excavation disturbed zone within a few meters of the repository, that can be reasonably characterized. Within a few centuries after waste emplacement, overburden pressures will seal fractures, resaturate the dehydrated zones, and provide a repository setting that strongly limits radionuclide movement to diffusive transport. Coupled hydrogeochemical transport calculations indicate maximum extents of radionuclide transport on the order of tens to hundreds of meters, or less, in a million years. Under the conditions modeled, a shale repository could achieve total containment, with no releases to the environment in undisturbed scenarios. The performance analyses described here are based on the assumption that long-term standards for disposal in clay/shale would be identical in the key aspects, to those prescribed for existing repository programs such as Yucca Mountain. This generic repository evaluation for shale is the first developed in the United States. Previous repository considerations have emphasized salt formations and volcanic rock formations. Much of the experience gained from U.S. repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, is applied here to scoping analyses for a shale repository. A contemporary understanding of clay mineralogy and attendant chemical environments has allowed identification of the appropriate features, events, and processes to be incorporated into the analysis. Advanced multi-physics modeling provides key support for understanding the effects from coupled processes. The results of the assessment show that shale formations provide a technically advanced, scientifically sound disposal option for the U.S.

More Details

Salt rock mechanics - prediction vs. performance - WIPP Provides Answers

Sandia journal manuscript; Not yet accepted for publication

Hansen, Francis D.

In the years leading up to the Compliance Certification Application in 1996, scientists working on the Waste Isolation Pilot Plant (WIPP) conducted an extensive suite of laboratory and field experiments. Additionally, full-scale experiments in the underground established performance standards and expectations, while the fundamental science of salt deformation was explored in the laboratory. Field experiments included several at elevated temperature to ascertain salt response under conditions anticipated for the operating repository, which at the outset included heat-generating defense waste. Simulations and predictions of the field tests were made using finite element computer models that incorporated sophisticated models for salt deformation. Parameters for the salt model were derived from laboratory experiments on natural salt extracted from the repository horizon. All of these science investigations provided confidence in the predicted behavior of the salt at WIPP. Lastly, on this tenth anniversary of WIPP operations, this paper recounts some of the geomechanics investigations conducted during site characterization, highlights three key geomechanics issues experienced over the decade of operations, and concludes that our basic understanding of salt mechanics portends a promising future for radioactive waste disposal in salt.

More Details

Disturbed rock zone geomechanics at the waste isolation pilot plant

International Journal of Geomechanics

Hansen, Francis D.

The disturbed rock zone constitutes an important geomechanical element of the Waste Isolation Pilot Plant. The science and engineering underpinning the disturbed rock zone provide the basis for evaluating ongoing operational issues and their impact on performance assessment. Contemporary treatment of the disturbed rock zone applied to the evaluation of the panel closure system and to a new mining horizon improves the level of detail and quantitative elements associated with a damaged zone surrounding the repository openings. Technical advancement has been realized by virtue of ongoing experimental investigations and international collaboration. Initial sections summarize and document theoretical and experimental results, which quantify characteristics of the disturbed rock zone as applied to nuclear waste repositories in salt. This information is then applied to operational issues pertaining to recertification of the repository. © 2008 ASCE.

More Details

Determination of the Porosity Surfaces of the Disposal Room Containing Various Waste Inventories for WIPP PA

Park, Byoung; Hansen, Francis D.

This report develops a series of porosity surfaces for the Waste Isolation Pilot Plant. The concept of a porosity surface was developed for performance assessment and comprises calculation of room closure as salt creep processes are mitigated by gas generation and back stress created by the waste packages within the rooms. The physical and mechanical characteristics of the waste packaging that has already been disposed--such as the pipe overpack--and new waste packaging--such as the advanced mixed waste compaction--are appreciably different than the waste form upon which the original compliance was based and approved. This report provides structural analyses of room closure with various waste inventories. All of the underlying assumptions pertaining to the original compliance certification including the same finite element code are implemented; only the material parameters describing the more robust waste packages are changed from the certified baseline. As modeled, the more rigid waste tends to hold open the rooms and create relatively more void space in the underground than identical calculations run on the standard waste packages, which underpin the compliance certification. The several porosity surfaces quantified within this report provide possible ranges of pressure and porosity for performance assessment analyses.3 Intentionally blank4 AcknowledgementsThis research is funded by WIPP programs administered by the U.S. Department of Energy. The authors would like to acknowledge the valuable contributions to this work provided by others. Dr. Joshua S. Stein helped explain the hand off between these finite element porosity surfaces and implementation in the performance calculations. Dr. Leo L. Van Sambeek of RESPEC Inc. helped us understand the concepts of room closure under the circumstances created by a rigid waste inventory. Dr. T. William Thompson and Tom W. Pfeifle provided technical review and Mario J. Chavez provided a Quality Assurance review. The paper has been improved by these individuals.Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94Al850005 Intentionally Blank6

More Details

Simulations of the pipe overpack to compute constitutive model parameters for use in WIPP room closure calculations

Park, Byoung; Hansen, Francis D.

The regulatory compliance determination for the Waste Isolation Pilot Plant includes the consideration of room closure. Elements of the geomechanical processes include salt creep, gas generation and mechanical deformation of the waste residing in the rooms. The WIPP was certified as complying with regulatory requirements based in part on the implementation of room closure and material models for the waste. Since the WIPP began receiving waste in 1999, waste packages have been identified that are appreciably more robust than the 55-gallon drums characterized for the initial calculations. The pipe overpack comprises one such waste package. This report develops material model parameters for the pipe overpack containers by using axisymmetrical finite element models. Known material properties and structural dimensions allow well constrained models to be completed for uniaxial, triaxial, and hydrostatic compression of the pipe overpack waste package. These analyses show that the pipe overpack waste package is far more rigid than the originally certified drum. The model parameters developed in this report are used subsequently to evaluate the implications to performance assessment calculations.

More Details

The disturbed rock zone at the Waste Isolation Pilot Plant

Hansen, Francis D.

The Disturbed Rock Zone constitutes an important geomechanical element of the Waste Isolation Pilot Plant. The science and engineering underpinning the disturbed rock zone provide the basis for evaluating ongoing operational issues and their impact on performance assessment. Contemporary treatment of the disturbed rock zone applied to the evaluation of the panel closure system and to a new mining horizon improves the level of detail and quantitative elements associated with a damaged zone surrounding the repository openings. Technical advancement has been realized by virtue of ongoing experimental investigations and international collaboration. The initial portion of this document discusses the disturbed rock zone relative to operational issues pertaining to re-certification of the repository. The remaining sections summarize and document theoretical and experimental advances that quantify characteristics of the disturbed rock zone as applied to nuclear waste repositories in salt.

More Details

From science to compliance: Geomechanics studies of the Waste Isolation Pilot Plant

Hansen, Francis D.

Mechanical and hydrological properties of salt provide excellent bases for geological isolation of hazardous materials. Regulatory certification of the Waste Isolation Pilot Plant (WIPP) testifies to the nearly ideal characteristics of bedded salt deposits in southeast New Mexico. The WIPP history includes decades of testing and scientific investigations, which have resulted in a comprehensive understanding of salt's mechanical deformational and hydrological properties over an applicable range of stresses and temperatures. Comprehensive evaluation of salt's favorable characteristics helped demonstrate regulatory compliance and ensure isolation of radioactive waste placed in a salt geological setting.

More Details

Review and perspectives on spallings release models in the 1996 performance assessment for the Waste Isolation Pilot Plant

Reliability Engineering and System Safety

Knowles, Mary K.; Hansen, Francis D.

The Waste Isolation Pilot Plant was licensed for disposal of transuranic wastes generated by the US Department of Energy. The facility consists of a repository mined in a bedded salt formation, approximately 650 m below the surface. Regulations promulgated by the US Environmental Protection Agency require that performance assessment calculations for the repository include the possibility that an exploratory drilling operation could penetrate the waste disposal areas at some time in the future. Release of contaminated solids could reach the surface during a drilling intrusion. One of the mechanisms for release, known as spallings, can occur if gas pressures in the repository exceed the hydrostatic pressure of a column of drilling mud. Calculation of solids releaes for spallings depends critically on the conceptual models for the waste, for the spallings process, and assumptions regarding driller parameters and practices. This paper presents a review of the evolution of these models during the regulatory review of the Compliance Certification Application for the repository. A summary and perspectives on the implementation of conservative assumptions in model development are also provided.

More Details

Design and analysis of a shaft seal system for the Waste Isolation Pilot Plant

Reliability Engineering and System Safety

Hansen, Francis D.

The Waste Isolation Pilot Plan requires a dependable shaft seal system to isolate the waste from the biosphere. This paper describes the shaft sealing system, which is designed to limit fluid transport through the four existing shafts. The design approach applies redundancy to functional elements and specifies multiple, common, low-permeability materials to ensure reliable performance. The system comprises 13 elements that completely fill the shafts with engineered materials possessing high density and low permeability. Laboratory and field measurements of component properties and performance provide the basis for the design and related evaluations. Hydrologic, mechanical, thermal, and physical features of the system are evaluated in a series of calculations. These calculations indicate that the design limits transport of fluids within the shafts, thereby limiting transport of hazardous material to regulatory boundaries. Additionally, the use or adaptation of existing technologies for seal construction combined with the use of available common materials assure that the design can be constructed.

More Details

Key Geomechanics Issues at the Waste Isolation Pilot Plant Geomechanics

Hansen, Francis D.

Mechanical and hydrological properties of rock salt provide excellent bases for geological isolation of hazardous materials. Regulatory compliance determinations for the Waste Isolation Pilot Plant (WIPP) stand as testament to the widely held conclusion that salt provides excellent isolation properties. The WIPP saga began in the 1950s when the U.S. National Academy of Sciences (NAS) recommended a salt vault as a promising solution to the national problem of nuclear waste disposal. For over 20 years, the Scientific basis for the NAS recommendation has been fortified by Sandia National Laboratories through a series of large scale field tests and laboratory investigations of salt properties. These scientific investigations helped develop a comprehensive understanding of salt's 4 reformational behavior over an applicable range of stresses and temperatures. Sophisticated constitutive modeling, validated through underground testing, provides the computational ability to model long-term behavior of repository configurations. In concert with advancement of the mechanical models, fluid flow measurements showed not only that the evaporite lithology was essentially impermeable but that the WIPP setting was hydrologically inactive. Favorable mechanical properties ensure isolation of materials placed in a salt geological setting. Key areas of the geomechanics investigations leading to the certification of WIPP are in situ experiments, laboratory tests, and shaft seal design.

More Details

Laboratory Characterization of Mechanical and Permeability Properties of Dynamically Compacted Crushed Salt

Hansen, Francis D.

The U. S. Department of Energy plans to dispose of transuranic wastes at the Waste Isolation Pilot Plant (WIPP), a geologic repository located at a depth of about 655 meters. The WIPP underground facility is located in the bedded salt of the Salado Formation. Access to the facility is provided through vertical shafts, which will be sealed after decommissioning to limit the release of hazardous waste from the repository and to limit flow into the facility. Because limited data are available to characterize the properties of dynamically compacted crushed salt, Sandia National Laboratories authorized RE/SPEC to perform additional tests on specimens of dynamically compacted crushed salt. These included shear consolidation creep, permeability, and constant strain-rate triaxial compression tests. A limited number of samples obtained from the large compacted mass were available for use in the testing program. Thus, additional tests were performed on samples that were prepared on a smaller scale device in the RE/SPEC laboratory using a dynamic-compaction procedure based on the full-scale construction technique. The laboratory results were expected to (1) illuminate the phenomenology of crushed-salt deformation behavior and (2) add test results to a small preexisting database for purposes of estimating parameters in a crushed-salt constitutive model. The candidate constitutive model for dynamically compacted crushed salt was refined in parallel with this laboratory testing.

More Details

Crushed Salt Constitutive Model

Hansen, Francis D.

The constitutive model used to describe the deformation of crushed salt is presented in this report. Two mechanisms -- dislocation creep and grain boundary diffusional pressure solution -- are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Upon complete consolidation, the crushed-salt model reproduces the Multimechanism Deformation (M-D) model typically used for the Waste Isolation Pilot Plant (WIPP) host geological formation salt. New shear consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on WIPP and southeastern New Mexico salt. Nonlinear least-squares model fitting to the database produced two sets of material parameter values for the model -- one for the shear consolidation tests and one for a combination of the shear and hydrostatic consolidation tests. Using the parameter values determined from the fitted database, the constitutive model is validated against constant strain-rate tests. Shaft seal problems are analyzed to demonstrate model-predicted consolidation of the shaft seal crushed-salt component. Based on the fitting statistics, the ability of the model to predict the test data, and the ability of the model to predict load paths and test data outside of the fitted database, the model appears to capture the creep consolidation behavior of crushed salt reasonably well.

More Details

Database of Mechanical and Hydrological Properties of WIPP Anhydrite Derived from Laboratory-Scale Experiments

Hansen, Francis D.

The Department of Energy (DOE) has developed the Waste Isolation Pilot Plant (WIPP) for the purpose of demonstrating safe management, storage, and disposal of radioactive transuranic (TRU) waste generated by U.S. defense programs. The WIPP is located in southeastern New Mexico, and the underground facilities of the WIPP (i.e., experimental rooms, disposal rooms, etc.) are sited in the bedded salt of the Salado Formation at a depth of about 660 meters. The DOE has authorized the continuance of scientific research and engineering analysis related to the performance of the WIPP repository. One area of additional research relates to characterization of the mechanical and hydrological properties of anhydrite interbeds within the Salado Formation. These anhydrite interbeds have been penetrated by the shafts that provide access to the underground facilities and also lie in close proximity to the proposed radioactive waste disposal rooms at the repository horizon. Properties of particular interest are mechanical strength, deforrnational behavior, and fluid transport properties such as permeability. These properties will be used in calculationskmalyses of the mechanical and hydrological behavior of the anhydrite, in particular, and the shaft sealing system and disposal rooms, in general.

More Details

Physical and mechanical properties of degraded waste surrogate material

Hansen, Francis D.

This paper discusses rock mechanics testing of surrogate materials to provide failure criteria for compacted, degraded nuclear waste. This daunting proposition was approached by first assembling all known parameters such as the initial waste inventory and rock mechanics response of the underground setting after the waste is stored. Conservative assumptions allowing for extensive degradation processes helped quantify the lowest possible strength conditions of the future state of the waste. In the larger conceptual setting, computations involve degraded waste behavior in transient pressure gradients as gas exits the waste horizon into a wellbore. Therefore, a defensible evaluation of tensile strength is paramount for successful analyses and intentionally provided maximal failed volumes. The very conservative approach assumes rampant degradation to define waste surrogate composition. Specimens prepared from derivative degradation product were consolidated into simple geometries for rock mechanics testing. Tensile strength thus derived helped convince a skeptical peer review panel that drilling into the Waste Isolation Pilot Plant (WIPP) would not likely expel appreciable solids via the drill string.

More Details

Constitutive behavior of reconsolidating crushed salt

International Journal of Rock Mechanics and Mining Sciences

Hansen, Francis D.

The constitutive model used to describe deformation of crushed salt is presented in this paper. Two mechanisms--dislocation creep and grain boundary diffusional pressure solutioning--are combined to form the basis for the constitutive model governing deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Recently completed creep consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on Waste Isolation Pilot Plant (WIPP) and southeastern New Mexico salt to determine material parameters for the constitutive model. Nonlinear least-squares model fitting to data from shear consolidation tests and a combination of shear and hydrostatic tests produces two sets of material parameter values for the model. Changes in material parameter values from test group to test group indicate the empirical nature of the model but show significant improvement over earlier work. To demonstrate the predictive capability of the model, each parameter value set was used to predict each of the tests in the database. Based on fitting statistics and ability of the model to predict test data, the model appears to capture the creep consolidation behavior of crushed salt quite well.

More Details

Crushed-salt constitutive model update

Hansen, Francis D.

Modifications to the constitutive model used to describe the deformation of crushed salt are presented in this report. Two mechanisms--dislocation creep and grain boundary diffusional pressure solutioning--defined previously but used separately are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. New creep consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on Waste Isolation Pilot Plant and southeastern New Mexico salt to determine material parameters for the constitutive model. Nonlinear least-squares model fitting to data from the shear consolidation tests and a combination of the shear and hydrostatic consolidation tests produced two sets of material parameter values for the model. The change in material parameter values from test group to test group indicates the empirical nature of the model but demonstrates improvement over earlier work with the previous models. Key improvements are the ability to capture lateral strain reversal and better resolve parameter values. To demonstrate the predictive capability of the model, each parameter value set was used to predict each of the tests in the database. Based on the fitting statistics and the ability of the model to predict the test data, the model appears to capture the creep consolidation behavior of crushed salt quite well.

More Details

Description and evaluation of a mechanistically based conceptual model for spall

Hansen, Francis D.

A mechanistically based model for a possible spall event at the WIPP site is developed and evaluated in this report. Release of waste material to the surface during an inadvertent borehole intrusion is possible if future states of the repository include high gas pressure and waste material consisting of fine particulates having low mechanical strength. The conceptual model incorporates the physics of wellbore hydraulics coupled to transient gas flow to the intrusion borehole, and mechanical response of the waste. Degraded waste properties using of the model. The evaluations include both numerical and analytical implementations of the conceptual model. A tensile failure criterion is assumed appropriate for calculation of volumes of waste experiencing fragmentation. Calculations show that for repository gas pressures less than 12 MPa, no tensile failure occurs. Minimal volumes of material experience failure below gas pressure of 14 MPa. Repository conditions dictate that the probability of gas pressures exceeding 14 MPa is approximately 1%. For these conditions, a maximum failed volume of 0.25 m{sup 3} is calculated.

More Details

A shaft seal system for the Waste Isolation Pilot Plant

Hansen, Francis D.

As part of the demonstration of compliance with federal regulations, a shaft seal system has been designed for the Waste Isolation Pilot Plant. The system completely fills the 650 m shafts with components consisting of the common engineering materials, each of which possesses low permeability, longevity, and can be constructed using available technology. Design investigations couple rock mechanics and fluid flow analysis and tests of these materials within the natural geological setting, and demonstrate the effectiveness of the design.

More Details

Large-scale dynamic compaction of natural salt

Hansen, Francis D.

A large-scale dynamic compaction demonstration of natural salt was successfully completed. About 40 m{sup 3} of salt were compacted in three, 2-m lifts by dropping a 9,000-kg weight from a height of 15 m in a systematic pattern to achieve desired compaction energy. To enhance compaction, 1 wt% water was added to the relatively dry mine-run salt. The average compacted mass fractional density was 0.90 of natural intact salt, and in situ nitrogen permeabilities averaged 9X10{sup -14}m{sup 2}. This established viability of dynamic compacting for placing salt shaft seal components. The demonstration also provided compacted salt parameters needed for shaft seal system design and performance assessments of the Waste Isolation Pilot Plant.

More Details

Evaluation of potential crushed-salt constitutive models

Hansen, Francis D.

Constitutive models describing the deformation of crushed salt are presented in this report. Ten constitutive models with potential to describe the phenomenological and micromechanical processes for crushed salt were selected from a literature search. Three of these ten constitutive models, termed Sjaardema-Krieg, Zeuch, and Spiers models, were adopted as candidate constitutive models. The candidate constitutive models were generalized in a consistent manner to three-dimensional states of stress and modified to include the effects of temperature, grain size, and moisture content. A database including hydrostatic consolidation and shear consolidation tests conducted on Waste Isolation Pilot Plant and southeastern New Mexico salt was used to determine material parameters for the candidate constitutive models. Nonlinear least-squares model fitting to data from the hydrostatic consolidation tests, the shear consolidation tests, and a combination of the shear and hydrostatic tests produces three sets of material parameter values for the candidate models. The change in material parameter values from test group to test group indicates the empirical nature of the models. To evaluate the predictive capability of the candidate models, each parameter value set was used to predict each of the tests in the database. Based on the fitting statistics and the ability of the models to predict the test data, the Spiers model appeared to perform slightly better than the other two candidate models. The work reported here is a first-of-its kind evaluation of constitutive models for reconsolidation of crushed salt. Questions remain to be answered. Deficiencies in models and databases are identified and recommendations for future work are made. 85 refs.

More Details

Case studies of sealing methods and materials used in the salt and potash mining industries

Hansen, Francis D.

Sealing methods and materials currently used in salt and potash industries were surveyed to determine if systems analogous to the shaft seal design proposed for the Waste Isolation Pilot Plant (WIPP) exist. Emphasis was first given to concrete and then expanded to include other materials. Representative case studies could provide useful design, construction, and performance information for development of the WIPP shaft seal system design. This report contains a summary of engineering and construction details of various sealing methods used by mining industries for bulkheads and shaft liners. Industrial experience, as determined from site visits and literature reviews, provides few examples of bulkheads built in salt and potash mines for control of water. Sealing experiences representing site-specific conditions often have little engineering design to back up the methods employed and even less quantitative evaluation of seal performance. Cases examined include successes and failures, and both contribute to a database of experiences. Mass salt-saturated concrete placement under ground was accomplished under several varied conditions. Information derived from this database has been used to assess the performance of concrete as a seal material. Concrete appears to be a robust material with successes in several case studies. 42 refs.

More Details

Large-scale dynamic compaction demonstration using WIPP salt: Fielding and preliminary results

Hansen, Francis D.

Reconsolidation of crushed rock salt is a phenomenon of great interest to programs studying isolation of hazardous materials in natural salt geologic settings. Of particular interest is the potential for disaggregated salt to be restored to nearly an impermeable state. For example, reconsolidated crushed salt is proposed as a major shaft seal component for the Waste Isolation Pilot Plant (WIPP) Project. The concept for a permanent shaft seal component of the WIPP repository is to densely compact crushed salt in the four shafts; an effective seal will then be developed as the surrounding salt creeps into the shafts, further consolidating the crushed salt. Fundamental information on placement density and permeability is required to ensure attainment of the design function. The work reported here is the first large-scale compaction demonstration to provide information on initial salt properties applicable to design, construction, and performance expectations. The shaft seals must function for 10,000 years. Over this period a crushed salt mass will become less permeable as it is compressed by creep closure of salt surrounding the shaft. These facts preclude the possibility of conducting a full-scale, real-time field test. Because permanent seals taking advantage of salt reconsolidation have never been constructed, performance measurements have not been made on an appropriately large scale. An understanding of potential construction methods, achievable initial density and permeability, and performance of reconsolidated salt over time is required for seal design and performance assessment. This report discusses fielding and operations of a nearly full-scale dynamic compaction of mine-run WIPP salt, and presents preliminary density and in situ (in place) gas permeability results.

More Details

Variability in properties of Salado Mass Concrete

Hansen, Francis D.

Salado Mass Concrete (SMC) has been developed for use as a seal component in the Waste Isolation Pilot Plant. This concrete is intended to be mixed from pre-bagged materials, have an initial slump of 10 in., and remain pumpable and placeable for two hours after mixing. It is a mass concrete because it will be placed in monoliths large enough that the heat generated during cement hydration has the potential to cause thermal expansion and subsequent cracking, a phenomenon to avoid in the seal system. This report describes effects on concrete properties of changes in ratio of water to cement, batch size, and variations in characteristics of different lots of individual components of the concrete. The research demonstrates that the concrete can be prepared from laboratory-batched or pre-bagged dry materials in batches from 1.5 ft{sup 3} to 5.0 yd{sup 3}, with no chemical admixtures other than the sodium chloride added to improve bonding with the host rock, at a water-to-cement ratio ranging from 0.36 to 0.42. All batches prepared according to established procedures had adequate workability for at least 1.5 hours, and achieved or exceeded the target compressive strength of 4500 psi at 180 days after casting. Portland cement and fly ash from different lots or sources did not have a measurable effect on concrete properties, but variations in a shrinkage-compensating cement used as a component of the concrete did appear to affect workability. A low initial temperature and the water-reducing and set-retarding functions of the salt are critical to meeting target properties.

More Details

Reconsolidation of salt as applied to permanent seals for the Waste Isolation Pilot Plant

Hansen, Francis D.

Reconsolidated salt is a fundamental component of the permanent seals for the Waste Isolation Pilot Plant. As regulations are currently understood and seal concepts envisioned, emplaced salt is the sole long-term seal component designed to prevent the shafts from becoming preferred pathways for rating gases or liquids. Studies under way in support of the sealing function of emplaced salt include laboratory testing of crushed salt small-scale in situ tests, constitutive modeling of crushed salt, calculations of the opening responses during operation and closure, and design practicalities including emplacement techniques. This paper briefly summarizes aspects of these efforts and key areas of future work.

More Details

Concepts for operational period panel seal design at the Waste Isolation Pilot Plant

Hansen, Francis D.

Concepts for underground panel or drift seals at the Waste Isolation Pilot Plant are developed to satisfy sealing requirements of the operational period. The concepts are divided into two groups. In the ``NOW`` group, design concepts are considered in which a sleeve structure is installed in the panel access immediately after excavation and before waste is emplaced. In the ``LATER`` group, no special measures are taken during excavation or before waste emplacement; the seal is installed at a later date, perhaps up to 35 years after the drift is excavated. Three concepts are presented in both the NOW and LATER groups. A rigid sleeve, a yielding sleeve, and steel rings with inflatable tubes are proposed as NOW concepts. One steel ring concept and two concrete monoliths are proposed for seals emplaced in older drifts. Advantages and disadvantages are listed for each concept. Based on the available information, it appears most feasible to recommend a LATER concept using a concrete monolith as a preferred seal for the operational period. Each concept includes the potential of remedial grout and/or construction of a chamber that could be used for monitoring leakage from a closed panel during the operational period. Supporting in situ demonstrations of elements of the concepts are recommended.

More Details
126 Results
126 Results