Publications

Results 26–35 of 35

Search results

Jump to search filters

Fundamental Materials Issues for Thermochemical H2O and CO2 Splitting: Final Report (FY08)

Coker, Eric N.; Rodriguez, M.A.; Ambrosini, Andrea A.; Stumpf, Roland R.; Stechel-Speicher, Ellen B.

Hydrogen and carbon monoxide may be produced using solar-thermal energy in two-stage reactions of water and carbon dioxide, respectively, over certain metal oxide materials. The most active materials observed experimentally for these processes are complex mixtures of ferrite and zirconia based solids, and it is not clear how far the ferrites, the zirconia, or a solid solution between the two participate in the change of oxidation state during the cycling. Identification of the key phases in the redox material that enable splitting is of paramount importance to developing a working model of the materials. A three-pronged approach was adopted here: computer modeling to determine thermodynamically favorable materials compositions, bench reactor testing to evaluate materials’ performance, and in-situ characterization of reactive materials to follow phase changes and identify the phases active for splitting. For the characterization and performance evaluation thrusts, cobalt ferrites were prepared by co-precipitation followed by annealing at 1400 °C. An in-situ X-ray diffraction capability was developed and tested, allowing phase monitoring in real time during thermochemical redox cycling. Key observations made for an un-supported cobalt ferrite include: 1) ferrite phases partially reduce to wustite upon heating to 1400 °C in helium; 2) exposing the material to air at 1100 °C causes immediate re-oxidation; 3) the re-oxidized material may be thermally reduced at 1400 °C under inert; 4) exposure of a reduced material to CO2 results in gradual re-oxidation at 1100 °C, but minimization of background O2-levels is essential; 5) even after several redox cycles, the lattice parameters of the ferrites remain constant, indicating that irreversible phase separation does not occur, at least over the first five cycles; 6) substituting chemical (hydrogen) reduction for thermal reduction resulted in formation of a CoFe metallic alloy. Materials were also evaluated for their CO2-splitting performance in bench reactor systems utilizing chemical reduction in place of thermal reduction. These tests lead to the following general conclusions: 1) despite over-reduction of the cobalt ferrite phase to CoFe alloy on chemical reduction, splitting of CO2 still occurs; 2) the kinetics of chemical reduction follow the sequence: un-supported < ZrO2-supported < yttria-stabilized ZrO2 (YSZ)-supported ferrite; 3) ferrite/YSZ re-oxidizes faster than ferrite/ZrO2 under CO2 in the range 400 – 700 °C. The temperature and pressure regimes in which the thermal reduction and water-splitting steps are thermodynamically favorable in terms of the enthalpy and entropy of oxide reduction, were determined. These metrics represent a useful design goal for any proposed water-splitting cycle. Applying this theoretical framework to available thermodynamic data, it was shown that none of the 105 binary oxide redox couples that were screened possess both energetically favorable reduction and oxidation steps. However, several driving forces, including low pressure and a large positive solid-state entropy of reduction of the oxide, have the potential to enable thermodynamically-favored two-step cycles.

More Details

Nanostructured electrocatalyst for fuel cells : silica templated synthesis of Pt/C composites

Hibbs, Michael R.; Stechel-Speicher, Ellen B.

Platinum-based electrocatalysts are currently required for state-of-the-art fuel cells and represent a significant portion of the overall fuel cell cost. If fuel cell technology is to become competitive with other energy conversion technologies, improve the utilization of precious metal catalysts is essential. A primary focus of this work is on creating enhanced nanostructured materials which improve precious-metal utilization. The goal is to engineer superior electrocatalytic materials through the synthesis, development and investigation of novel templated open frame structures synthesized in an aerosol-based approach. Bulk templating methods for both Pt/C and Pt-Ru composites are evaluated in this study and are found to be limited due to the fact that the nanostructure is not maintained throughout the entire sample. Therefore, an accurate examination of structural effects was previously impossible. An aerosol-based templating method of synthesizing nanostructured Pt-Ru electrocatalysts has been developed wherein the effects of structure can be related to electrocatalytic performance. The aerosol-based templating method developed in this work is extremely versatile as it can be conveniently modified to synthesize alternative materials for other systems. The synthesis method was able to be extended to nanostructured Pt-Sn for ethanol oxidation in alkaline media. Nanostructured Pt-Sn electrocatalysts were evaluated in a unique approach tailored to electrocatalytic studies in alkaline media. At low temperatures, nanostructured Pt-Sn electrocatalysts were found to have significantly higher ethanol oxidation activity than a comparable nanostructured Pt catalyst. At higher temperatures, the oxygen-containing species contribution likely provided by Sn is insignificant due to a more oxidized Pt surface. The importance of the surface coverage of oxygen-containing species in the reaction mechanism is established in these studies. The investigations in this work present original studies of anion exchange ionomers as entrapment materials for rotating disc electrode (RDE) studies in alkaline media. Their significance is linked to the development of membrane electrode assemblies (MEAs) with the same ionomer for a KOH-free alkaline fuel cell (AFC).

More Details

Linear scaling algorithms: Progress and promise

Stechel-Speicher, Ellen B.

The goal of this laboratory-directed research and development (LDRD) project was to develop a new and efficient electronic structure algorithm that would scale linearly with system size. Since the start of the program this field has received much attention in the literature as well as in terms of focused symposia and at least one dedicated international workshop. The major success of this program is the development of a unique algorithm for minimization of the density functional energy which replaces the diagonalization of the Kohn-Sham hamiltonian with block diagonalization into explicit occupied and partially occupied (in metals) subspaces and an implicit unoccupied subspace. The progress reported here represents an important step toward the simultaneous goals of linear scaling, controlled accuracy, efficiency and transferability. The method is specifically designed to deal with localized, non-orthogonal basis sets to maximize transferability and state by state iteration to minimize any charge-sloshing instabilities and accelerate convergence. The computational demands of the algorithm do scale as the particle number, permitting applications to problems involving many inequivalent atoms. Our targeted goal is at least 10,000 inequivalent atoms on a teraflop computer. This report describes our algorithm, some proof-of-principle examples and a state of the field at the conclusion of this LDRD.

More Details

Renormalization from density functional theory strong coupling models for the electronic structure of La sub 2 CuO sub 4

Stechel-Speicher, Ellen B.

Strong coupling models for the electronic structure of La{sub 2}CuO{sub 4} are derived in two successive stages of renormalization. First, a three-band Hubbard model is derived using a constrained density functional approach. Second, exact diagonalization studies of finite clusters within the three band Hubbard model are used to select and map the low energy spectra onto effective one-band Hamiltonians. At each stage, some observables are calculated and found to be in quantitative agreement with experiment. The final results suggest the following models to be adequate descriptions of the low energy scale dynamics: (1) a spin 1/2 Heisenberg model for the insulating case with nearest neighbor J{approx}130 meV; (2) a t -- t' -- J'' model with nearly identical parameters for the electron and hole doped cases. 14 refs., 2 figs., 1 tab.

More Details
Results 26–35 of 35
Results 26–35 of 35