The upcoming re-entry of the OSIRIS-REx Return Capsule: Plans for a coordinated seismo-acoustic observational campaign
Abstract not provided.
Abstract not provided.
Remote Sensing
In recent years, high-altitude infrasound sensing has become more prolific, demonstrating an enormous value especially when utilized over regions inaccessible to traditional ground-based sensing. Similar to ground-based infrasound detectors, airborne sensors take advantage of the fact that impulsive atmospheric events such as explosions can generate low frequency acoustic waves, also known as infrasound. Due to negligible attenuation, infrasonic waves can travel over long distances, and provide important clues about their source. Here, we report infrasound detections of the Apollo detonation that was carried on 29 October 2020 as part of the Large Surface Explosion Coupling Experiment in Nevada, USA. Infrasound sensors attached to solar hot air balloons floating in the stratosphere detected the signals generated by the explosion at distances 170–210 km. Three distinct arrival phases seen in the signals are indicative of multipathing caused by the small-scale perturbations in the atmosphere. We also found that the local acoustic environment at these altitudes is more complex than previously thought.
Abstract not provided.
Abstract not provided.
Abstract not provided.
JASA Express Letters
Free-floating balloons are an emerging platform for infrasound recording, but they cannot host arrays sufficiently wide for multi-sensor acoustic direction finding techniques. Because infrasound waves are longitudinal, the balloon motion in response to acoustic loading can be used to determine the signal azimuth. This technique, called “aeroseismometry,” permits sparse balloon-borne networks to geolocate acoustic sources. This is demonstrated by using an aeroseismometer on a stratospheric balloon to measure the direction of arrival of acoustic waves from successive ground chemical explosions. A geolocation algorithm adapted from hydroacoustics is then used to calculate the location of the explosions.
Aeroseismometery is a novel, cutting edge capability that involves balloon based systems for detecting and geolocating sources of infrasound. The incident infrasound from a range of sources such as volcanos, earthquakes, explosions, supersonic aircraft impinges upon the balloon system causing it to respond dynamically. The dynamic response is post-processed to locate the infrasound source. This report documents the derivation of an analytical model that predicts the balloon dynamics. Governing equations for the system are derived as well as a transfer function relating the infrasound signal to the net force on the balloon components. Experimental measurements of the infrasound signals are convolved with the transfer function and the governing equations numerically time integrated to obtain predictions of the displacement, velocity and acceleration of the balloon system. The predictions are compared to the experimental measurements with good agreement observed. The derivation focuses only on the vertical dynamics of the balloon system. Future work will develop governing equations for the swinging response of the balloon to the incident infrasound.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.