Total Learning Architecture (TLA) Enables Next-generation Learning via Meta-adaptation
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Advances in Intelligent Systems and Computing
Next generation learning ecosystems will be comprised of intelligent, adaptive environments that utilize one’s cultural footprints to co-create shared narratives and facilitate intercultural understanding. The present paper discusses why digital footprints, cultural signposts, intercultural agents, and transmedia learning are needed to realize relevant learning in virtual environments. The paper introduces notions that may impact the design of culturally-aware information technology for distributed learning are presented.
Abstract not provided.
International Conference on Intelligent User Interfaces, Proceedings IUI
A hypothetical scenario is utilized to explore privacy and security considerations for intelligent systems, such as a Personal Assistant for Learning (PAL). Two categories of potential concerns are addressed: factors facilitated by user models, and factors facilitated by systems. Among the strategies presented for risk mitigation is a call for ongoing, iterative dialog among privacy, security, and personalization researchers during all stages of development, testing, and deployment.
Abstract not provided.
Abstract not provided.
Abstract not provided.
International Defense and Homeland Security Simulation Workshop, DHSS 2012, Held at the International Multidisciplinary Modeling and Simulation Multiconference, I3M 2012
Serious games present a relatively new approach to training and education for Defense and Homeland Security. Although serious games are often deployed as stand-alone solutions, they can also serve as entry points into training content that is delivered via different media. The present paper explores the application of transmedia storytelling used by entertainment, advertising, and the commercial game industries to sustain audience engagement with memorable experiences. Transmedia storytelling is the art and science of designing a consistent message that is delivered and reinforced across multiple media utilizing diverse entry points into a narrative to generate audience involvement with content. This approach is consistent with the goals of the Army Learning Model 2015 to deliver training and education to Soldiers across multiple media. Transmedia storytelling also provides a practical framework for developing media-rich training. In the present paper, we introduce the notion of transmedia storytelling, also known as transmedia or cross-media, as related to the use of serious games for training and education. We discuss why the human brain is wired for transmedia storytelling and demonstrate how the Simulation Experience Design Method can be used to create transmedia story worlds and serious games. Examples of how the U.S. Army has utilized transmedia for strategic communication and game-based training are provided. Finally, we conclude with strategies the reader can use today to incorporate transmedia storytelling elements such as Internet, TV, radio, print, social media, graphic novels, machinima, blogs, and alternate reality gaming into defense and homeland security serious game training. Copyright© (2012) by CAL-TEK S.r.l.
Abstract not provided.
International Defense and Homeland Security Simulation Workshop, DHSS 2011, Held at the International Mediterranean and Latin American Modeling Multiconference, I3M 2011
In the present paper the act of learner reflection during training with an adaptive or predictive computer-based tutor is considered a learner-system interaction. Incorporating reflection and real-time evaluation of peer performance into adaptive and predictive computerbased tutoring can support the development of automated adaptation. Allowing learners to refine and inform student models from reflective practice with independent open learner models may improve overall accuracy and relevancy. Given the emphasis on selfdirected peer learning with adaptive technology, learner and instructor modeling research continue to be critical research areas for education and training technology.
International Journal of Game-Based Learning
The focus of the present paper is the design of multi-player role-playing game instances as crucible experiences for the exploration of one's emotional intelligence. Subsequent sections describe the design of game-based, intercultural crucible experiences and how this design was employed for training with members of the United States Marine Corps (USMC). This work with the USMC is presented as a case study and example of the use of crucible experiences in game-based learning. Crucible experiences are learning opportunities relevant across a number of different domains and disciplines such as education, healthcare, corporate training, diplomacy, crisis management, international business, and intercultural communication. The present paper demonstrates that crucible experiences are catalysts for personal growth and can be incorporated into game-based learning design whose intent is to create defining moments in which learners can explore emotional intelligence and examine who they are under challenging conditions. © 2011, IGI Global.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Complex problem solving approaches and novel strategies employed by the military at the squad, team, and commander level are often best learned experimentally. Since live action exercises can be costly, advances in simulation game training technology offer exciting ways to enhance current training. Computer games provide an environment for active, critical learning. Games open up possibilities for simultaneous learning on multiple levels; players may learn from contextual information embedded in the dynamics of the game, the organic process generated by the game, and through the risks, benefits, costs, outcomes, and rewards of alternative strategies that result from decision making. In the present paper we discuss a multiplayer computer game simulation created for the Adaptive Thinking & Leadership (ATL) Program to train Special Forces Team Leaders. The ATL training simulation consists of a scripted single-player and an immersive multiplayer environment for classroom use which leverages immersive computer game technology. We define adaptive thinking as consisting of competencies such as negotiation and consensus building skills, the ability to communicate effectively, analyze ambiguous situations, be self-aware, think innovatively, and critically use effective problem solving skills. Each of these competencies is an essential element of leader development training for the U.S. Army Special Forces. The ATL simulation is used to augment experiential learning in the curriculum for the U.S. Army JFK Special Warfare Center & School (SWCS) course in Adaptive Thinking & Leadership. The school is incorporating the ATL simulation game into two additional training pipelines (PSYOPS and Civil Affairs Qualification Courses) that are also concerned with developing cultural awareness, interpersonal communication adaptability, and rapport-building skills. In the present paper, we discuss the design, development, and deployment of the training simulation, and emphasize how the multiplayer simulation game is successfully used in the Special Forces Officer training program.
Proposed for publication in Interactive Technology and Smart Education.
The work reported in this document involves a development effort to provide combat commanders and systems engineers with a capability to explore and optimize system concepts that include operational concepts as part of the design effort. An infrastructure and analytic framework has been designed and partially developed that meets a gap in systems engineering design for combat related complex systems. The system consists of three major components: The first component consists of a design environment that permits the combat commander to perform 'what-if' types of analyses in which parts of a course of action (COA) can be automated by generic system constructs. The second component consists of suites of optimization tools designed to integrate into the analytical architecture to explore the massive design space of an integrated design and operational space. These optimization tools have been selected for their utility in requirements development and operational concept development. The third component involves the design of a modeling paradigm for the complex system that takes advantage of functional definitions and the coupled state space representations, generic measures of effectiveness and performance, and a number of modeling constructs to maximize the efficiency of computer simulations. The system architecture has been developed to allow for a future extension in which the operational concept development aspects can be performed in a co-evolutionary process to ensure the most robust designs may be gleaned from the design space(s).
In exploring the question of how humans reason in ambiguous situations or in the absence of complete information, we stumbled onto a body of knowledge that addresses issues beyond the original scope of our effort. We have begun to understand the importance that philosophy, in particular the work of C. S. Peirce, plays in developing models of human cognition and of information theory in general. We have a foundation that can serve as a basis for further studies in cognition and decision making. Peircean philosophy provides a foundation for understanding human reasoning and capturing behavioral characteristics of decision makers due to cultural, physiological, and psychological effects. The present paper describes this philosophical approach to understanding the underpinnings of human reasoning. We present the work of C. S. Peirce, and define sets of fundamental reasoning behavior that would be captured in the mathematical constructs of these newer technologies and would be able to interact in an agent type framework. Further, we propose the adoption of a hybrid reasoning model based on his work for future computational representations or emulations of human cognition.
This report documents an exploratory FY 00 LDRD project that sought to demonstrate the first steps toward a realistic computational representation of the variability encountered in individual human behavior. Realism, as conceptualized in this project, required that the human representation address the underlying psychological, cultural, physiological, and environmental stressors. The present report outlines the researchers' approach to representing cognitive, cultural, and physiological variability of an individual in an ambiguous situation while faced with a high-consequence decision that would greatly impact subsequent events. The present project was framed around a sensor-shooter scenario as a soldier interacts with an unexpected target (two young Iraqi girls). A software model of the ''Sensor Shooter'' scenario from Desert Storm was developed in which the framework consisted of a computational instantiation of Recognition Primed Decision Making in the context of a Naturalistic Decision Making model [1]. Recognition Primed Decision Making was augmented with an underlying foundation based on our current understanding of human neurophysiology and its relationship to human cognitive processes. While the Gulf War scenario that constitutes the framework for the Sensor Shooter prototype is highly specific, the human decision architecture and the subsequent simulation are applicable to other problems similar in concept, intensity, and degree of uncertainty. The goal was to provide initial steps toward a computational representation of human variability in cultural, cognitive, and physiological state in order to attain a better understanding of the full depth of human decision-making processes in the context of ambiguity, novelty, and heightened arousal.
Abstract not provided.