Publications

Results 51–75 of 121

Search results

Jump to search filters

Shape Optimization for Control and Isolation of Structural Vibrations in Aerospace and Defense Applications

Hardesty, Sean; Kouri, Drew P.; Lindsay, Payton; Ridzal, Denis; Stevens, Brian; Viertel, Ryan

Among the main challenges in shape optimization is the coupling of Finite Element Method (FEM) codes in a way that facilitates efficient computation of shape derivatives. This is particularly difficult with multi-physics problems involving legacy codes, where the costs of implementing and maintaining shape derivative capabilities are prohibitive. There are two mathematically equivalent approaches to computing the shape derivative: the volume method, and the boundary method. Each has a major drawback: the boundary method is less accurate, while the volume method is more invasive to the FEM code. Prior implementations of shape derivatives at Sandia have been based on the volume method. We introduce the strip method, which computes shape derivatives on a strip adjacent to the boundary. The strip method makes code coupling simple. Like the boundary method, it queries the state and adjoint solutions at quadrature nodes, but requires no knowledge of the FEM code implementations. At the same time, it exhibits the higher accuracy of the volume method. The development of the strip method also offers us the opportunity to share some lessons learned about implementing the volume method and boundary method, to show shape optimization results on problems of interest, and to begin addressing the other main challenges at hand: constraints on optimized shapes, and their interplay with optimization algorithms.

More Details

Risk-averse optimal control of semilinear elliptic PDEs

ESAIM: Control, Optimisation and Calculus of Variations

Kouri, Drew P.; Surowiec, Thomas

In this paper, we consider the optimal control of semilinear elliptic PDEs with random inputs. These problems are often nonconvex, infinite-dimensional stochastic optimization problems for which we employ risk measures to quantify the implicit uncertainty in the objective function. In contrast to previous works in uncertainty quantification and stochastic optimization, we provide a rigorous mathematical analysis demonstrating higher solution regularity (in stochastic state space), continuity and differentiability of the control-to-state map, and existence, regularity and continuity properties of the control-to-adjoint map. Our proofs make use of existing techniques from PDE-constrained optimization as well as concepts from the theory of measurable multifunctions. We illustrate our theoretical results with two numerical examples motivated by the optimal doping of semiconductor devices.

More Details

Epi-regularization of risk measures

Mathematics of Operations Research

Kouri, Drew P.; Surowiec, Thomas M.

Uncertainty pervades virtually every branch of science and engineering, and in many disciplines, the underlying phenomena can be modeled by partial differential equations (PDEs) with uncertain or random inputs. This work is motivated by risk-averse stochastic programming problems constrained by PDEs. These problems are posed in infinite dimensions, which leads to a significant increase in the scale of the (discretized) problem. In order to handle the inherent nonsmoothness of, for example, coherent risk measures and to exploit existing solution techniques for smooth, PDE-constrained optimization problems, we propose a variational smoothing technique called epigraphical (epi-)regularization. We investigate the effects of epi-regularization on the axioms of coherency and prove differentiability of the smoothed risk measures. In addition, we demonstrate variational convergence of the epi-regularized risk measures and prove the consistency of minimizers and first-order stationary points for the approximate risk-averse optimization problem. We conclude with numerical experiments confirming our theoretical results.

More Details

KKT preconditioners for pde-constrained optimization with the helmholtz equation

SIAM Journal on Scientific Computing

Kouri, Drew P.; Ridzal, Denis; Tuminaro, Raymond S.

This paper considers preconditioners for the linear systems that arise from optimal control and inverse problems involving the Helmholtz equation. Specifically, we explore an all-at-once approach. The main contribution centers on the analysis of two block preconditioners. Variations of these preconditioners have been proposed and analyzed in prior works for optimal control problems where the underlying partial differential equation is a Laplace-like operator. In this paper, we extend some of the prior convergence results to Helmholtz-based optimization applications. Our analysis examines situations where control variables and observations are restricted to subregions of the computational domain. We prove that solver convergence rates do not deteriorate as the mesh is refined or as the wavenumber increases. More specifically, for one of the preconditioners we prove accelerated convergence as the wavenumber increases. Additionally, in situations where the control and observation subregions are disjoint, we observe that solver convergence rates have a weak dependence on the regularization parameter. We give a partial analysis of this behavior. We illustrate the performance of the preconditioners on control problems motivated by acoustic testing.

More Details

Higher-moment buffered probability

Optimization Letters

Kouri, Drew P.

In stochastic optimization, probabilities naturally arise as cost functionals and chance constraints. Unfortunately, these functions are difficult to handle both theoretically and computationally. The buffered probability of failure and its subsequent extensions were developed as numerically tractable, conservative surrogates for probabilistic computations. In this manuscript, we introduce the higher-moment buffered probability. Whereas the buffered probability is defined using the conditional value-at-risk, the higher-moment buffered probability is defined using higher-moment coherent risk measures. In this way, the higher-moment buffered probability encodes information about the magnitude of tail moments, not simply the tail average. We prove that the higher-moment buffered probability is closed, monotonic, quasi-convex and can be computed by solving a smooth one-dimensional convex optimization problem. These properties enable smooth reformulations of both higher-moment buffered probability cost functionals and constraints.

More Details

An adaptive local reduced basis method for solving PDEs with uncertain inputs and evaluating risk

Computer Methods in Applied Mechanics and Engineering

Kouri, Drew P.; Aquino, Wilkins; Zou, Zilong

Many physical systems are modeled using partial differential equations (PDEs) with uncertain or random inputs. For such systems, naively propagating a fixed number of samples of the input probability law (or an approximation thereof) through the PDE is often inadequate to accurately quantify the “risk” associated with critical system responses. In this paper, we develop a goal-oriented, adaptive sampling and local reduced basis approximation for PDEs with random inputs. Our method determines a set of samples and an associated (implicit) Voronoi partition of the parameter domain on which we build local reduced basis approximations of the PDE solution. The samples are selected in an adaptive manner using an a posteriori error indicator. A notable advantage of the proposed approach is that the computational cost of the approximation during the adaptive process remains constant. We provide theoretical error bounds for our approximation and numerically demonstrate the performance of our method when compared to widely used adaptive sparse grid techniques. In addition, we tailor our approach to accurately quantify the risk of quantities of interest that depend on the PDE solution. We demonstrate our method on an advection–diffusion example and a Helmholtz example.

More Details

Spectral risk measures: the risk quadrangle and optimal approximation

Mathematical Programming

Kouri, Drew P.

We develop a general risk quadrangle that gives rise to a large class of spectral risk measures. The statistic of this new risk quadrangle is the average value-at-risk at a specific confidence level. As such, this risk quadrangle generates a continuum of error measures that can be used for superquantile regression. For risk-averse optimization, we introduce an optimal approximation of spectral risk measures using quadrature. We prove the consistency of this approximation and demonstrate our results through numerical examples.

More Details

An efficient, globally convergent method for optimization under uncertainty using adaptive model reduction and sparse grids

SIAM-ASA Journal on Uncertainty Quantification

Zahr, Matthew J.; Carlberg, Kevin T.; Kouri, Drew P.

This work introduces a new method to efficiently solve optimization problems constrained by partial differential equations (PDEs) with uncertain coefficients. The method leverages two sources of inexactness that trade accuracy for speed: (1) stochastic collocation based on dimension-Adaptive sparse grids (SGs), which approximates the stochastic objective function with a limited number of quadrature nodes, and (2) projection-based reduced-order models (ROMs), which generate efficient approximations to PDE solutions. These two sources of inexactness lead to inexact objective function and gradient evaluations, which are managed by a trust-region method that guarantees global convergence by adaptively refining the SG and ROM until a proposed error indicator drops below a tolerance specified by trust-region convergence theory. A key feature of the proposed method is that the error indicator|which accounts for errors incurred by both the SG and ROM|must be only an asymptotic error bound, i.e., a bound that holds up to an arbitrary constant that need not be computed. This enables the method to be applicable to a wide range of problems, including those where sharp, computable error bounds are not available; this distinguishes the proposed method from previous works. Numerical experiments performed on a model problem from optimal ow control under uncertainty verify global convergence of the method and demonstrate the method's ability to outperform previously proposed alternatives.

More Details

Existence and Optimality Conditions for Risk-Averse PDE-Constrained Optimization

SIAM/ASA Journal on Uncertainty Quantification

Kouri, Drew P.; Surowiec, Thomas M.

Uncertainty is ubiquitous in virtually all engineering applications, and, for such problems, it is inadequate to simulate the underlying physics without quantifying the uncertainty in unknown or random inputs, boundary and initial conditions, and modeling assumptions. Here in this paper, we introduce a general framework for analyzing risk-averse optimization problems constrained by partial differential equations (PDEs). In particular, we postulate conditions on the random variable objective function as well as the PDE solution that guarantee existence of minimizers. Furthermore, we derive optimality conditions and apply our results to the control of an environmental contaminant. Lastly, we introduce a new risk measure, called the conditional entropic risk, that fuses desirable properties from both the conditional value-at-risk and the entropic risk measures.

More Details

A Measure Approximation for Distributionally Robust PDE-Constrained Optimization Problems

SIAM Journal on Numerical Analysis

Kouri, Drew P.

In numerous applications, scientists and engineers acquire varied forms of data that partially characterize the inputs to an underlying physical system. This data is then used to inform decisions such as controls and designs. Consequently, it is critical that the resulting control or design is robust to the inherent uncertainties associated with the unknown probabilistic characterization of the model inputs. Here in this work, we consider optimal control and design problems constrained by partial differential equations with uncertain inputs. We do not assume a known probabilistic model for the inputs, but rather we formulate the problem as a distributionally robust optimization problem where the outer minimization problem determines the control or design, while the inner maximization problem determines the worst-case probability measure that matches desired characteristics of the data. We analyze the inner maximization problem in the space of measures and introduce a novel measure approximation technique, based on the approximation of continuous functions, to discretize the unknown probability measure. Finally, we prove consistency of our approximated min-max problem and conclude with numerical results.

More Details
Results 51–75 of 121
Results 51–75 of 121