Randomized Sketching for Low-Memory Dynamic Optimization
Abstract not provided.
Abstract not provided.
Abstract not provided.
Constructing accurate statistical models of critical system responses typically requires an enormous amount of data from physical experiments or numerical simulations. Unfortunately, data generation is often expensive and time consuming. To streamline the data generation process, optimal experimental design determines the 'best' allocation of experiments with respect to a criterion that measures the ability to estimate some important aspect of an assumed statistical model. While optimal design has a vast literature, few researchers have developed design paradigms targeting tail statistics, such as quantiles. In this project, we tailored and extended traditional design paradigms to target distribution tails. Our approach included (i) the development of new optimality criteria to shape the distribution of prediction variances, (ii) the development of novel risk-adapted surrogate models that provably overestimate certain statistics including the probability of exceeding a threshold, and (iii) the asymptotic analysis of regression approaches that target tail statistics such as superquantile regression. To accompany our theoretical contributions, we released implementations of our methods for surrogate modeling and design of experiments in two complementary open source software packages, the ROL/OED Toolkit and PyApprox.
Abstract not provided.
Abstract not provided.
We present a surrogate modeling framework for conservatively estimating measures of risk from limited realizations of an expensive physical experiment or computational simulation. We adopt a probabilistic description of risk that assigns probabilities to consequences associated with an event and use risk measures, which combine objective evidence with the subjective values of decision makers, to quantify anticipated outcomes. Given a set of samples, we construct a surrogate model that produces estimates of risk measures that are always greater than their empirical estimates obtained from the training data. These surrogate models not only limit over-confidence in reliability and safety assessments, but produce estimates of risk measures that converge much faster to the true value than purely sample-based estimates. We first detail the construction of conservative surrogate models that can be tailored to the specific risk preferences of the stakeholder and then present an approach, based upon stochastic orders, for constructing surrogate models that are conservative with respect to families of risk measures. The surrogate models introduce a bias that allows them to conservatively estimate the target risk measures. We provide theoretical results that show that this bias decays at the same rate as the L2 error in the surrogate model. Our numerical examples confirm that risk-aware surrogate models do indeed over-estimate the target risk measures while converging at the expected rate.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ROL-PEBBL is a C++, MPI-based parallel code for mixed-integer PDE-constrained optimization (MIPDECO). In these problems we wish to optimize (control, design, etc.) physical systems, which must obey the laws of physics, when some of the decision variables must take integer values. ROL-PEBBL combines a code to efficiently search over integer choices (PEBBL = Parallel Enumeration Branch-and-Bound Library) and a code for efficient nonlinear optimization, including PDE-constrained optimization (ROL = Rapid Optimization Library). In this report, we summarize the design of ROL-PEBBL and initial applications/results. For an artificial source-inversion problem, finding sources of pollution on a grid from sparse samples, ROL-PEBBLs solution for the nest grid gave the best optimization guarantee for any general solver that gives both a solution and a quality guarantee.
Abstract not provided.
SIAM Journal on Control and Optimization
In this paper, we introduce and analyze a new class of optimal control problems constrained by elliptic equations with uncertain fractional exponents. We utilize risk measures to formulate the resulting optimization problem. We develop a functional analytic framework, study the existence of solution, and rigorously derive the first-order optimality conditions. Additionally, we employ a sample-based approximation for the uncertain exponent and the finite element method to discretize in space. We prove the rate of convergence for the optimal risk neutral controls when using quadrature approximation for the uncertain exponent and conclude with illustrative examples.
SIAM Journal on Optimization
This paper develops a novel limited-memory method to solve dynamic optimization problems. The memory requirements for such problems often present a major obstacle, particularly for problems with PDE constraints such as optimal flow control, full waveform inversion, and optical tomography. In these problems, PDE constraints uniquely determine the state of a physical system for a given control; the goal is to find the value of the control that minimizes an objective. While the control is often low dimensional, the state is typically more expensive to store. This paper suggests using randomized matrix approximation to compress the state as it is generated and shows how to use the compressed state to reliably solve the original dynamic optimization problem. Concretely, the compressed state is used to compute approximate gradients and to apply the Hessian to vectors. The approximation error in these quantities is controlled by the target rank of the sketch. This approximate first- and second-order information can readily be used in any optimization algorithm. As an example, we develop a sketched trust-region method that adaptively chooses the target rank using a posteriori error information and provably converges to a stationary point of the original problem. Numerical experiments with the sketched trust-region method show promising performance on challenging problems such as the optimal control of an advection-reaction-diffusion equation and the optimal control of fluid flow past a cylinder.
This report summarizes the work performed under the project "Linear Programming in Strongly Polynomial Time." Linear programming (LP) is a classic combinatorial optimization problem heavily used directly and as an enabling subroutine in integer programming (IP). Specifically IP is the same as LP except that some solution variables must take integer values (e.g. to represent yes/no decisions). Together LP and IP have many applications in resource allocation including general logistics, and infrastructure design and vulnerability analysis. The project was motivated by the PI's recent success developing methods to efficiently sample Voronoi vertices (essentially finding nearest neighbors in high-dimensional point sets) in arbitrary dimension. His method seems applicable to exploring the high-dimensional convex feasible space of an LP problem. Although the project did not provably find a strongly-polynomial algorithm, it explored multiple algorithm classes. The new medial simplex algorithms may still lead to solvers with improved provable complexity. We describe medial simplex algorithms and some relevant structural/complexity results. We also designed a novel parallel LP algorithm based on our geometric insights and implemented it in the Spoke-LP code. A major part of the computational step is many independent vector dot products. Our parallel algorithm distributes the problem constraints across processors. Current commercial and high-quality free LP solvers require all problem details to fit onto a single processor or multicore. Our new algorithm might enable the solution of problems too large for any current LP solvers. We describe our new algorithm, give preliminary proof-of-concept experiments, and describe a new generator for arbitrarily large LP instances.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Among the main challenges in shape optimization is the coupling of Finite Element Method (FEM) codes in a way that facilitates efficient computation of shape derivatives. This is particularly difficult with multi-physics problems involving legacy codes, where the costs of implementing and maintaining shape derivative capabilities are prohibitive. There are two mathematically equivalent approaches to computing the shape derivative: the volume method, and the boundary method. Each has a major drawback: the boundary method is less accurate, while the volume method is more invasive to the FEM code. Prior implementations of shape derivatives at Sandia have been based on the volume method. We introduce the strip method, which computes shape derivatives on a strip adjacent to the boundary. The strip method makes code coupling simple. Like the boundary method, it queries the state and adjoint solutions at quadrature nodes, but requires no knowledge of the FEM code implementations. At the same time, it exhibits the higher accuracy of the volume method. The development of the strip method also offers us the opportunity to share some lessons learned about implementing the volume method and boundary method, to show shape optimization results on problems of interest, and to begin addressing the other main challenges at hand: constraints on optimized shapes, and their interplay with optimization algorithms.
ESAIM: Control, Optimisation and Calculus of Variations
In this paper, we consider the optimal control of semilinear elliptic PDEs with random inputs. These problems are often nonconvex, infinite-dimensional stochastic optimization problems for which we employ risk measures to quantify the implicit uncertainty in the objective function. In contrast to previous works in uncertainty quantification and stochastic optimization, we provide a rigorous mathematical analysis demonstrating higher solution regularity (in stochastic state space), continuity and differentiability of the control-to-state map, and existence, regularity and continuity properties of the control-to-adjoint map. Our proofs make use of existing techniques from PDE-constrained optimization as well as concepts from the theory of measurable multifunctions. We illustrate our theoretical results with two numerical examples motivated by the optimal doping of semiconductor devices.
Abstract not provided.
Mathematics of Operations Research
Uncertainty pervades virtually every branch of science and engineering, and in many disciplines, the underlying phenomena can be modeled by partial differential equations (PDEs) with uncertain or random inputs. This work is motivated by risk-averse stochastic programming problems constrained by PDEs. These problems are posed in infinite dimensions, which leads to a significant increase in the scale of the (discretized) problem. In order to handle the inherent nonsmoothness of, for example, coherent risk measures and to exploit existing solution techniques for smooth, PDE-constrained optimization problems, we propose a variational smoothing technique called epigraphical (epi-)regularization. We investigate the effects of epi-regularization on the axioms of coherency and prove differentiability of the smoothed risk measures. In addition, we demonstrate variational convergence of the epi-regularized risk measures and prove the consistency of minimizers and first-order stationary points for the approximate risk-averse optimization problem. We conclude with numerical experiments confirming our theoretical results.
Abstract not provided.
SIAM Journal on Scientific Computing
This paper considers preconditioners for the linear systems that arise from optimal control and inverse problems involving the Helmholtz equation. Specifically, we explore an all-at-once approach. The main contribution centers on the analysis of two block preconditioners. Variations of these preconditioners have been proposed and analyzed in prior works for optimal control problems where the underlying partial differential equation is a Laplace-like operator. In this paper, we extend some of the prior convergence results to Helmholtz-based optimization applications. Our analysis examines situations where control variables and observations are restricted to subregions of the computational domain. We prove that solver convergence rates do not deteriorate as the mesh is refined or as the wavenumber increases. More specifically, for one of the preconditioners we prove accelerated convergence as the wavenumber increases. Additionally, in situations where the control and observation subregions are disjoint, we observe that solver convergence rates have a weak dependence on the regularization parameter. We give a partial analysis of this behavior. We illustrate the performance of the preconditioners on control problems motivated by acoustic testing.