Exploring Resilient Transformer & CNN Architectures FOR Resource-Constrained edge systems
Abstract not provided.
Abstract not provided.
ACM International Conference Proceeding Series
Evolutionary algorithms have been shown to be an effective method for training (or configuring) spiking neural networks. There are, however, challenges to developing accessible, scalable, and portable solutions. We present an extension to the Fugu framework that wraps the NEAT framework, bringing evolutionary algorithms to Fugu. This approach provides a flexible and customizable platform for optimizing network architectures, independent of fitness functions and input data structures. We leverage Fugu's computational graph approach to evaluate all members of a population in parallel. Additionally, as Fugu is platform-agnostic, this population can be evaluated in simulation or on neuromorphic hardware. We demonstrate our extension using several classification and agent-based tasks. One task illustrates how Fugu integration allows for spiking pre-processing to lower the search space dimensionality. We also provide some benchmark results using the Intel Loihi platform.
Abstract not provided.
Classification of features in a scene typically requires conversion of the incoming photonic field int the electronic domain. Recently, an alternative approach has emerged whereby passive structured materials can perform classification tasks by directly using free-space propagation and diffraction of light. In this manuscript, we present a theoretical and computational study of such systems and establish the basic features that govern their performance. We show that system architecture, material structure, and input light field are intertwined and need to be co-designed to maximize classification accuracy. Our simulations show that a single layer metasurface can achieve classification accuracy better than conventional linear classifiers, with an order of magnitude fewer diffractive features than previously reported. For a wavelength λ, single layer metasurfaces of size 100λ x 100λ with aperture density λ-2 achieve ~96% testing accuracy on the MNIST dataset, for an optimized distance ~100λ to the output plane. This is enabled by an intrinsic nonlinearity in photodetection, despite the use of linear optical metamaterials. Furthermore, we find that once the system is optimized, the number of diffractive features is the main determinant of classification performance. The slow asymptotic scaling with the number of apertures suggests a reason why such systems may benefit from multiple layer designs. Finally, we show a trade-off between the number of apertures and fabrication noise.
ACM International Conference Proceeding Series
Neuromorphic computing (NMC) is an exciting paradigm seeking to incorporate principles from biological brains to enable advanced computing capabilities. Not only does this encompass algorithms, such as neural networks, but also the consideration of how to structure the enabling computational architectures for executing such workloads. Assessing the merits of NMC is more nuanced than simply comparing singular, historical performance metrics from traditional approaches versus that of NMC. The novel computational architectures require new algorithms to make use of their differing computational approaches. And neural algorithms themselves are emerging across increasing application domains. Accordingly, we propose following the example high performance computing has employed using context capturing mini-apps and abstraction tools to explore the merits of computational architectures. Here we present Neural Mini-Apps in a neural circuit tool called Fugu as a means of NMC insight.
Abstract not provided.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
Deep neural networks have recently demonstrated state-of-the-art accuracy on public Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR) benchmark datasets. While attaining competitive accuracy on benchmark datasets is a necessary feature, it is important to characterize other facets of new SAR ATR algorithms. We extend this recent work by demonstrating not only improved state-of-the-art accuracy, but that contemporary deep neural networks can achieve several algorithmic traits beyond competitive accuracy which are necessitated by operational deployment scenarios. First, we employ several saliency map algorithms to provide explainability and insight into understanding black-box classiffer decisions. Second, we collect and implement numerous data augmentation routines and training improvements both from the computer vision literature and specffc to SAR ATR data in order to further improve model domain adaptation performance from synthetic to measured data, achieving a 99.26% accuracy on SAMPLE validation with a simple network architecture. Finally, we survey model reproducibility and performance variability under domain adaptation from synthetic to measured data, demonstrating potential consequences of training on only synthetic data.
Neuromorphic computers are hardware systems that mimic the brain’s computational process phenomenology. This is in contrast to neural network accelerators, such as the Google TPU or the Intel Neural Compute Stick, which seek to accelerate the fundamental computation and data flows of neural network models used in the field of machine learning. Neuromorphic computers emulate the integrate and fire neuron dynamics of the brain to achieve a spiking communication architecture for computation. While neural networks are brain-inspired, they drastically oversimplify the brain’s computation model. Neuromorphic architectures are closer to the true computation model of the brain (albeit, still simplified). Neuromorphic computing models herald a 1000x power improvement over conventional CPU architectures. Sandia National Labs is a major contributor to the research community on neuromorphic systems by performing design analysis, evaluation, and algorithm development for neuromorphic computers. Space-based remote sensing development has been a focused target of funding for exploratory research into neuromorphic systems for their potential advantage in that program area; SNL has led some of these efforts. Recently, neuromorphic application evaluation has reached the NA-22 program area. This same exploratory research and algorithm development should penetrate the unattended ground sensor space for SNL’s mission partners and program areas. Neuromorphic computing paradigms offer a distinct advantage for the SWaP-constrained embedded systems of our diverse sponsor-driven program areas.
Typical approaches to classify scenes from light convert the light field to electrons to perform the computation in the digital electronic domain. This conversion and downstream computational analysis require significant power and time. Diffractive neural networks have recently emerged as unique systems to classify optical fields at lower energy and high speeds. Previous work has shown that a single layer of diffractive metamaterial can achieve high performance on classification tasks. In analogy with electronic neural networks, it is anticipated that multilayer diffractive systems would provide better performance, but the fundamental reasons for the potential improvement have not been established. In this work, we present extensive computational simulations of two - layer diffractive neural networks and show that they can achieve high performance with fewer diffractive features than single layer systems.
Automated vehicles (AV) hold great promise for improving safety, as well as reducing congestion and emissions. In order to make automated vehicles commercially viable, a reliable and highperformance vehicle-based computing platform that meets ever-increasing computational demands will be key. Given the state of existing digital computing technology, designers will face significant challenges in meeting the needs of highly automated vehicles without exceeding thermal constraints or consuming a large portion of the energy available on vehicles, thus reducing range between charges or refills. The accompanying increases in energy for AV use will place increased demand on energy production and distribution infrastructure, which also motivates increasing computational energy efficiency.
ACS Photonics
Classification of features in a scene typically requires conversion of the incoming photonic field into the electronic domain. Recently, an alternative approach has emerged whereby passive structured materials can perform classification tasks by directly using free-space propagation and diffraction of light. In this manuscript, we present a theoretical and computational study of such systems and establish the basic features that govern their performance. We show that system architecture, material structure, and input light field are intertwined and need to be co-designed to maximize classification accuracy. Our simulations show that a single layer metasurface can achieve classification accuracy better than conventional linear classifiers, with an order of magnitude fewer diffractive features than previously reported. For a wavelength λ, single layer metasurfaces of size 100λ × 100λ with an aperture density λ-2 achieve ∼96% testing accuracy on the MNIST data set, for an optimized distance ∼100λ to the output plane. This is enabled by an intrinsic nonlinearity in photodetection, despite the use of linear optical metamaterials. Furthermore, we find that once the system is optimized, the number of diffractive features is the main determinant of classification performance. The slow asymptotic scaling with the number of apertures suggests a reason why such systems may benefit from multiple layer designs. Finally, we show a trade-off between the number of apertures and fabrication noise.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
n this presentation we will discuss recent results on using the SpiNNaker neuromorphic platform (48-chip model) for deep learning neural network inference. We use the Sandia Labs developed Whet stone spiking deep learning library to train deep multi-layer perceptrons and convolutional neural networks suitable for the spiking substrate on the neural hardware architecture. By using the massively parallel nature of SpiNNaker, we are able to achieve, under certain network topologies, substantial network tiling and consequentially impressive inference throughput. Such high-throughput systems may have eventual application in remote sensing applications where large images need to be chipped, scanned, and processed quickly. Additionally, we explore complex topologies that push the limits of the SpiNNaker routing hardware and investigate how that impacts mapping software-implemented networks to on-hardware instantiations.
Proceedings - 2021 International Conference on Rebooting Computing, ICRC 2021
Boolean functions and binary arithmetic operations are central to standard computing paradigms. Accordingly, many advances in computing have focused upon how to make these operations more efficient as well as exploring what they can compute. To best leverage the advantages of novel computing paradigms it is important to consider what unique computing approaches they offer. However, for any special-purpose co-processor, Boolean functions and binary arithmetic operations are useful for, among other things, avoiding unnecessary I/O on-and-off the co-processor by pre- and post-processing data on-device. This is especially true for spiking neuromorphic architectures where these basic operations are not fundamental low-level operations. Instead, these functions require specific implementation. Here we discuss the implications of an advantageous streaming binary encoding method as well as a handful of circuits designed to exactly compute elementary Boolean and binary operations.
Proceedings of SPIE - The International Society for Optical Engineering
Neural network approaches have periodically been explored in the pursuit of high performing SAR ATR solutions. With deep neural networks (DNNs) now offering many state-of-The-Art solutions to computer vision tasks, neural networks are once again being revisited for ATR processing. Here, we characterize and explore a suite of neural network architectural topologies. In doing so, we assess how different architectural approaches impact performance and consider the associated computational costs. This includes characterizing network depth, width, scale, connectivity patterns, as well as convolution layer optimizations. We have explored a suite of architectural topologies applied to both the canonical MSTAR dataset, as well as the more operationally realistic Synthetic and Measured Paired and Labeled Experiment (SAMPLE) dataset. The latter pairs high fidelity computational models of targets with actual measured SAR data. Effectively, this dataset offers the ability to train a DNN on simulated data and test the network performance on measured data. Not only does our in-depth architecture topology analysis offer insight into how different architectural approaches impact performance, but we also have trained DNNs attaining state-of-The-Art performance on both datasets. Furthermore, beyond just accuracy, we also assess how efficiently an accelerator architecture executes these neural networks. Specifically, Using an analytical assessment tool, we forecast energy and latency for an edge TPU like architecture. Taken together, this tradespace exploration offers insight into the interplay of accuracy, energy, and latency for executing these networks.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ACM International Conference Proceeding Series
Deep learning networks have become a vital tool for image and data processing tasks for deployed and edge applications. Resource constraints, particularly low power budgets, have motivated methods and devices for efficient on-edge inference. Two promising methods are reduced precision communication networks (e.g. binary activation spiking neural networks) and weight pruning. In this paper, we provide a preliminary exploration for combining these two methods, specifically in-training weight pruning of whetstone networks, to achieve deep networks with both sparse weights and binary activations.