Publications

Results 151–175 of 236

Search results

Jump to search filters

Synchrotron photoionization measurements of OH-initiated cyclohexene oxidation: Ring-preserving products in OH + cyclohexene and hydroxycyclohexyl + O 2 reactions

Journal of Physical Chemistry A

Ray, Amelia W.; Taatjes, Craig A.; Welz, Oliver W.; Osborn, David L.; Meloni, Giovanni

Earlier synchrotron photoionization mass spectrometry experiments suggested a prominent ring-opening channel in the OH-initiated oxidation of cyclohexene, based on comparison of product photoionization spectra with calculated spectra of possible isomers. The present work re-examines the OH + cyclohexene reaction, measuring the isomeric products of OH-initiated oxidation of partially and fully deuterated cyclohexene. In particular, the directly measured photoionization spectrum of 2-cyclohexen-1-ol differs substantially from the previously calculated Franck-Condon envelope, and the product spectrum can be fit with no contribution from ring-opening. Measurements of H 2O 2 photolysis in the presence of C 6D 10 establish that the addition-elimination product incorporates the hydrogen atom from the hydroxyl radical reactant and loses a hydrogen (a D atom in this case) from the ring. Investigation of OH + cyclohexene-4,4,5,5-d 4 confirms this result and allows mass discrimination of different abstraction pathways. Products of 2-hydroxycyclohexyl-d 10 reaction with O 2 are observed upon adding a large excess of O 2 to the OH + C 6D 10 system. © 2012 American Chemical Society.

More Details

Absolute photoionization cross-section of the propargyl radical

Journal of Chemical Physics

Savee, John D.; Soorkia, Satchin; Welz, Oliver W.; Selby, Talitha M.; Taatjes, Craig A.; Osborn, David L.

Using synchrotron-generated vacuum-ultraviolet radiation and multiplexed time-resolved photoionization mass spectrometry we have measured the absolute photoionization cross-section for the propargyl (C 3H 3) radical, σ propargyl ion (E), relative to the known absolute cross-section of the methyl (CH 3) radical. We generated a stoichiometric 1:1 ratio of C 3H 3 : CH 3 from 193 nm photolysis of two different C 4H 6 isomers (1-butyne and 1,3-butadiene). Photolysis of 1-butyne yielded values of σ propargyl ion (10.213 eV)=(26.1±4.2) Mb and σ propargyl ion (10.413 eV)=(23.4±3.2) Mb, whereas photolysis of 1,3-butadiene yielded values of σ propargyl ion (10.213 eV)=(23.6±3.6) Mb and σ propargyl ion (10.413 eV)=(25.1±3.5) Mb. These measurements place our relative photoionization cross-section spectrum for propargyl on an absolute scale between 8.6 and 10.5 eV. The cross-section derived from our results is approximately a factor of three larger than previous determinations. © 2012 American Institute of Physics.

More Details

Low-temperature combustion chemistry of biofuels: Pathways in the initial low-temperature (550 K-750 K) oxidation chemistry of isopentanol

Physical Chemistry Chemical Physics

Welz, Oliver W.; Zador, Judit Z.; Savee, John D.; Ng, Martin Y.; Meloni, Giovanni; Fernandes, Ravi X.; Sheps, Leonid S.; Simmons, Blake S.; Lee, Taek S.; Osborn, David L.; Taatjes, Craig A.

The branched C 5 alcohol isopentanol (3-methylbutan-1-ol) has shown promise as a potential biofuel both because of new advanced biochemical routes for its production and because of its combustion characteristics, in particular as a fuel for homogeneous-charge compression ignition (HCCI) or related strategies. In the present work, the fundamental autoignition chemistry of isopentanol is investigated by using the technique of pulsed-photolytic Cl-initiated oxidation and by analyzing the reacting mixture by time-resolved tunable synchrotron photoionization mass spectrometry in low-pressure (8 Torr) experiments in the 550-750 K temperature range. The mass-spectrometric experiments reveal a rich chemistry for the initial steps of isopentanol oxidation and give new insight into the low-temperature oxidation mechanism of medium-chain alcohols. Formation of isopentanal (3-methylbutanal) and unsaturated alcohols (including enols) associated with HO 2 production was observed. Cyclic ether channels are not observed, although such channels dominate OH formation in alkane oxidation. Rather, products are observed that correspond to formation of OH via β-C-C bond fission pathways of QOOH species derived from β- and γ-hydroxyisopentylperoxy (RO 2) radicals. In these pathways, internal hydrogen abstraction in the RO 2 QOOH isomerization reaction takes place from either the -OH group or the C-H bond in α-position to the -OH group. These pathways should be broadly characteristic for longer-chain alcohol oxidation. Isomer-resolved branching ratios are deduced, showing evolution of the main products from 550 to 750 K, which can be qualitatively explained by the dominance of RO 2 chemistry at lower temperature and hydroxyisopentyl decomposition at higher temperature. © 2012 The Owner Societies.

More Details

Competing channels in the propene+OH reaction: Experiment and validated modeling over a broad temperature and pressure range

Zeitschrift fur Physikalische Chemie

Kappler, Claudia; Zador, Judit Z.; Welz, Oliver W.; Fernandes, Ravi X.; Olzmann, Matthias; Taatjes, Craig A.

Although the propene+OH reaction has been in the center of interest of numerous experimental and theoretical studies, rate coefficients have never been determined experimentally between ∼600 and ∼ 750 K, where the reaction is governed by the complex interaction of addition, back-dissociation and abstraction. In this work OH time-profiles are measured in two independent laboratories over a wide temperature region (200-950 K) and are analyzed incorporating recent theoretical results. The datasets are consistent both with each other and with the calculated rate coefficients. We present a simplified set of reactions validated over a broad temperature and pressure range, that can be used in smaller combustion models for propene+OH. In addition, the experimentally observed kinetic isotope effect for the abstraction is rationalized using ab initio calculations and variational transition-state theory. We recommend the following approximate description of the OH+C 3H6 reaction: C3H6+OH⇄C 3H6OH (R1a,R-1a) C3H6+OH→C 3H5+H2O (R1b) k1a(200K ≤ T ≤ 950 K;1 bar ≤ P) = 1.45×10-11 (T/K)-0.18e 460K/Tcm3 molecule-1s-1 k -1a(200 K ≤ T ≤ 950 K; 1 bar ≤ P) = 5.74×10 12e-12690K/Ts-1 k1b(200 K ≤ T ≤ 950 K) = 1.63×10-18 (T/K)2.36e -725K/T cm3 molecule-1s-1. © by Oldenbourg Wissenschaftsverlag, München.

More Details

Branching fractions of the CN + C 3H 6 reaction using synchrotron photoionization mass spectrometry: Evidence for the 3-cyanopropene product

Journal of Physical Chemistry A

Trevitt, Adam J.; Soorkia, Satchin; Savee, John D.; Selby, Talitha S.; Osborn, David L.; Taatjes, Craig A.; Leone, Stephen R.

The gas-phase CN + propene reaction is investigated using synchrotron photoionization mass spectrometry (SPIMS) over the 9.8 - 11.5 eV photon energy range. Experiments are conducted at room temperature in 4 Torr of He buffer gas. The CN + propene addition reaction produces two distinct product mass channels, C 3H 3N and C 4H 5N, corresponding to CH 3 and H elimination, respectively. The CH 3 and H elimination channels are measured to have branching fractions of 0.59 ± 0.15 and 0.41 ± 0.10, respectively. The absolute photoionization cross sections between 9.8 and 11.5 eV are measured for the three considered H-elimination coproducts: 1-, 2-, and 3-cyanopropene. Based on fits using the experimentally measured photoionization spectra for the C 4H 5N mass channel and contrary to the previous study (Int. J. Mass. Spectrom.2009, 280, 113 - 118), where it was concluded that 3-cyanopropene was not a significant product, the new data suggests 3-cyanopropene is produced in significant quantity along with 1-cyanopropene, with isomer branching fractions from this mass channel of 0.50 ± 0.12 and 0.50 ± 0.24, respectively. However, similarities between the 1-, 2-, and 3-cyanopropene photoionization spectra make an unequivocal assignment difficult based solely on photoionization spectra. The CN + CH 2CHCD 3 reaction is studied and shows, in addition to the H-elimination product signal, a D-elimination product channel (m/z 69, consistent with CH 2CHCD 2CN), providing further evidence for the formation of the 3-cyanopropene reaction product. © 2011 American Chemical Society.

More Details
Results 151–175 of 236
Results 151–175 of 236