Precise Micromotion Compensation of a Tilted Ion Chain
Frontiers in Quantum Science and Technology
Frontiers in Quantum Science and Technology
Frontiers in Quantum Science and Technology
Frontiers in Quantum Science and Technology
npj Quantum Information
Experiments with trapped ions and neutral atoms typically employ optical modulators in order to control the phase, frequency, and amplitude of light directed to individual atoms. These elements are expensive, bulky, consume substantial power, and often rely on free-space I/O channels, all of which pose scaling challenges. To support many-ion systems like trapped-ion quantum computers or miniaturized deployable devices like clocks and sensors, these elements must ultimately be microfabricated, ideally monolithically with the trap to avoid losses associated with optical coupling between physically separate components. In this work we design, fabricate, and test an optical modulator capable of monolithic integration with a surface-electrode ion trap. These devices consist of piezo-optomechanical photonic integrated circuits configured as multi-stage Mach-Zehnder modulators that are used to control the intensity of light delivered to a single trapped ion on a separate chip. We use quantum tomography employing hundreds of multi-gate sequences to enhance the sensitivity of the fidelity to the types and magnitudes of gate errors relevant to quantum computing and better characterize the performance of the modulators, ultimately measuring single qubit gate fidelities that exceed 99.7%.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
In this report we describe the testing of a novel scheme for state preparation of trapped ions in a quantum computing setup. This technique optimally would allow for similar precision and speed of state preparation while allowing for individual addressability of single ions in a chain using technology already available in a trapped ion experiment. As quantum computing experiments become more complicated, mid-experiment measurements will become necessary to achieve algorithms such as quantum error correction. Any mid-experiment measurement then requires the measured qubit to be re-prepared to a known quantum state. Currently this involves the protected qubits to be moved a sizeable distance away from the qubit being re-prepared which can be costly in terms of experiment length as well as introducing errors. Theoretical calculations predict that a three-photon process would allow for state preparation without qubit movement with similar efficiencies to current state preparation methods.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
As trapped ion systems add more ions to allow for increasingly sophisticated quantum processing and sensing capabilities, the traditional optical-mechanical laboratory infrastructure that make such systems possible are in some cases the limiting factor in further growth of the systems. One promising solution is to integrate as many, if not all, optical components such as waveguides and gratings, single-photon detectors, and high extinction ratio optical switches/modulators either into ion traps themselves or into auxiliary devices that can be easily integrated with ion traps. Here we report on recent efforts at Sandia National Laboratories to include integrated photonics in our surface ion trap platforms.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Quantum Engineering
The Quantum Scientific Computing Open User Testbed (QSCOUT) at Sandia National Laboratories is a trapped-ion qubit system designed to evaluate the potential of near-term quantum hardware in scientific computing applications for the U.S. Department of Energy and its Advanced Scientific Computing Research program. Similar to commercially available platforms, it offers quantum hardware that researchers can use to perform quantum algorithms, investigate noise properties unique to quantum systems, and test novel ideas that will be useful for larger and more powerful systems in the future. However, unlike most other quantum computing testbeds, the QSCOUT allows both quantum circuit and low-level pulse control access to study new modes of programming and optimization. The purpose of this article is to provide users and the general community with details of the QSCOUT hardware and its interface, enabling them to take maximum advantage of its capabilities.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.